分析 ①四邊形ABCD是矩形,BE⊥AC,則∠ABC=∠AFB=90°,又∠BAF=∠CAB,于是△AEF∽△CAB,故①正確;
②由AE=$\frac{1}{2}$AD=$\frac{1}{2}$BC,又AD∥BC,所以$\frac{AE}{BC}=\frac{AF}{FC}=\frac{1}{2}$,故②正確;
③過(guò)D作DM∥BE交AC于N,得到四邊形BMDE是平行四邊形,求出BM=DE=$\frac{1}{2}$BC,得到CN=NF,根據(jù)線段的垂直平分線的性質(zhì)可得結(jié)論,故③正確;
④根據(jù)三角函數(shù)的定義得到tan∠CAD=$\frac{\sqrt{2}}{2}$,故④錯(cuò)誤;
⑤根據(jù)△AEF∽△CBF得到$\frac{EF}{BF}=\frac{AE}{BC}=\frac{1}{2}$,求出S△AEF=$\frac{1}{2}$S△ABF,S△ABF=$\frac{1}{6}$S矩形ABCD;S四邊形CDEF=S△ACD-S△AEF=$\frac{1}{2}$S矩形ABCD-$\frac{1}{12}$S矩形ABCD=$\frac{5}{12}$S矩形ABCD,即可得到S四邊形CDEF=$\frac{5}{2}$S△ABF,故⑤正確.
解答 解:過(guò)D作DM∥BE交AC于N,
∵四邊形ABCD是矩形,
∴AD∥BC,∠ABC=90°,AD=BC,
∵BE⊥AC于點(diǎn)F,
∴∠EAC=∠ACB,∠ABC=∠AFE=90°,
∴△AEF∽△CAB,故①正確;
∵AD∥BC,
∴△AEF∽△CBF,
∴$\frac{AE}{BC}=\frac{AF}{CF}$,
∵AE=$\frac{1}{2}$AD=$\frac{1}{2}$BC,
∴$\frac{AF}{CF}=\frac{1}{2}$,
∴CF=2AF,故②正確,
∵DE∥BM,BE∥DM,
∴四邊形BMDE是平行四邊形,
∴BM=DE=$\frac{1}{2}$BC,
∴BM=CM,
∴CN=NF,
∵BE⊥AC于點(diǎn)F,DM∥BE,
∴DN⊥CF,
∴DF=DC,故③正確;
由△BAE∽△ADC,有$\frac{AB}{AD}=\frac{\frac{AD}{2}}{AB}$,
∴$\frac{A{D}^{2}}{A{B}^{2}}=\frac{1}{2}$,
∴$\frac{AD}{AB}=\frac{\sqrt{2}}{2}$,
∵tan∠CAD=$\frac{CD}{AD}=\frac{AB}{AD}$,
∴tan∠CAD=$\frac{\sqrt{2}}{2}$,故④錯(cuò)誤;
∵△AEF∽△CBF,
∴$\frac{EF}{BF}=\frac{AE}{BC}=\frac{1}{2}$,
∴S△AEF=$\frac{1}{2}$S△ABF,S△ABF=$\frac{1}{6}$S矩形ABCD
∴S△AEF=$\frac{1}{12}$S矩形ABCD,
又∵S四邊形CDEF=S△ACD-S△AEF=$\frac{1}{2}$S矩形ABCD-$\frac{1}{12}$S矩形ABCD=$\frac{5}{12}$S矩形ABCD,
∴S四邊形CDEF=$\frac{5}{2}$S△ABF,故⑤正確;
故答案為:①②③⑤.
點(diǎn)評(píng) 此題是四邊形綜合題,主要考查了相似三角形的判定和性質(zhì),矩形的性質(zhì),平行四邊形的判定和性質(zhì),圖形面積的計(jì)算,正確的作出輔助線是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 4 | C. | $\sqrt{6}$ | D. | $2\sqrt{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{5}{12}$ | B. | $\frac{12}{13}$ | C. | $\frac{12}{5}$ | D. | $\frac{5}{13}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com