【題目】(課題研究)旋轉(zhuǎn)圖形中對(duì)應(yīng)線段所在直線的夾角(小于等于的角)與旋轉(zhuǎn)角的關(guān)系.
(問(wèn)題初探)線段繞點(diǎn)順時(shí)針旋轉(zhuǎn)得線段,其中點(diǎn)與點(diǎn)對(duì)應(yīng),點(diǎn)與點(diǎn)對(duì)應(yīng),旋轉(zhuǎn)角的度數(shù)為,且.
(1)如圖(1)當(dāng)時(shí),線段、所在直線夾角為______.
(2)如圖(2)當(dāng)時(shí),線段、所在直線夾角為_____.
(3)如圖(3),當(dāng)時(shí),直線與直線夾角與旋轉(zhuǎn)角存在著怎樣的數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;
(形成結(jié)論)旋轉(zhuǎn)圖形中,當(dāng)旋轉(zhuǎn)角小于平角時(shí),對(duì)應(yīng)線段所在直線的夾角與旋轉(zhuǎn)角_____.
(運(yùn)用拓廣)運(yùn)用所形成的結(jié)論求解下面的問(wèn)題:
(4)如圖(4),四邊形中,,,,,,試求的長(zhǎng)度.
【答案】(1)90°;(2)60°;(3)互補(bǔ),理由見(jiàn)解析;相等或互補(bǔ);(4).
【解析】
(1)通過(guò)作輔助線如圖1,延長(zhǎng)DC交AB于F,交BO于E,可以通過(guò)旋轉(zhuǎn)性質(zhì)得到AB=CD,OA=OC,BO=DO,證明△AOB≌△COD,進(jìn)而求得∠B=∠D得∠BFE=∠EOD=90°
(2)通過(guò)作輔助線如圖2,延長(zhǎng)DC交AB于F,交BO于E,同(1)得∠BFE=∠EOD=60°
(3)通過(guò)作輔助線如圖3,直線與直線所夾的銳角與旋轉(zhuǎn)角互補(bǔ), 延長(zhǎng),交于點(diǎn)通過(guò)證明得,再通過(guò)平角的定義和四邊形內(nèi)角和定理,證得;
形成結(jié)論:通過(guò)問(wèn)題(1)(2)(3)可以總結(jié)出旋轉(zhuǎn)圖形中,當(dāng)旋轉(zhuǎn)角小于平角時(shí),對(duì)應(yīng)線段所在直線的夾角與旋轉(zhuǎn)角相等或互補(bǔ);
(4)通過(guò)作輔助線如圖:將繞點(diǎn)順時(shí)針旋轉(zhuǎn),使得與重合,得到,連接,延長(zhǎng),交于點(diǎn),可得,進(jìn)一步得到△BDF是等邊三角形,,再利用勾股定理求得.
(1)解:(1)如圖1,延長(zhǎng)DC交AB于F,交BO于E,
∵α=90°
∴∠BOD=90°
∵線段AB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)得線段CD,
∴AB=CD,OA=OC,BO=DO
∴△AOB≌△COD(SSS)
∴∠B=∠D
∵∠B=∠D,∠OED=∠BEF
∴∠BFE=∠EOD=90°
故答案為:90°
(2)如圖2,延長(zhǎng)DC交AB于F,交BO于E,
∵α=60°
∴∠BOD=60°
∵線段AB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)得線段CD,
∴AB=CD,OA=OC,BO=DO
∴△AOB≌△COD(SSS)
∴∠B=∠D
∵∠B=∠D,∠OED=∠BEF
∴∠BFE=∠EOD=60°
故答案為:60°
(3)直線與直線所夾的銳角與旋轉(zhuǎn)角互補(bǔ),
延長(zhǎng),交于點(diǎn)
∵線段繞點(diǎn)順時(shí)針旋轉(zhuǎn)得線段,
∴,,
∴
∴
∴
∵
∴
∴
∴直線與直線所夾的銳角與旋轉(zhuǎn)角互補(bǔ);
形成結(jié)論:旋轉(zhuǎn)圖形中,當(dāng)旋轉(zhuǎn)角小于平角時(shí),對(duì)應(yīng)線段所在直線的夾角與旋轉(zhuǎn)角相等或互補(bǔ);
(4)將繞點(diǎn)順時(shí)針旋轉(zhuǎn),使得與重合,得到,連接,延長(zhǎng),交于點(diǎn),
∴旋轉(zhuǎn)角為,
∴,,,
∴△BDF是等邊三角形,
∵,,
∴,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(9分)如圖,直線l經(jīng)過(guò)點(diǎn)A(1,6)和點(diǎn)B(﹣3,﹣2).
(1)求直線l的解析式,直線與坐標(biāo)軸的交點(diǎn)坐標(biāo);
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】課外閱讀是提高學(xué)生素養(yǎng)的重要途徑.某校為了解本校學(xué)生課外閱讀情況,對(duì)九年級(jí)學(xué)生進(jìn)行隨機(jī)抽樣調(diào)查.如圖是根據(jù)調(diào)查結(jié)果繪制成的統(tǒng)計(jì)圖(不完整),請(qǐng)根據(jù)圖中提供的信息,解答下面的問(wèn)題:
(1)本次抽樣調(diào)查的樣本容量是____ ____;
(2)在條形統(tǒng)計(jì)圖補(bǔ)中,計(jì)算出日人均閱讀時(shí)間在0.5~1小時(shí)的人數(shù)是____ ____,并將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)在扇形統(tǒng)計(jì)圖中,計(jì)算出日人均閱讀時(shí)間在1~1.5小時(shí)對(duì)應(yīng)的圓心角度數(shù)____ ____度;
(4)根據(jù)本次抽樣調(diào)查,試估計(jì)該市15000名九年級(jí)學(xué)生中日人均閱讀時(shí)間在0.5~1.5小時(shí)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(背景知識(shí))
數(shù)軸是初中數(shù)學(xué)的一個(gè)重要工具,利用數(shù)軸可以將數(shù)與形完美結(jié)合.研究數(shù)軸我們發(fā)現(xiàn)有許多重要的規(guī)律:
例如,若數(shù)軸上點(diǎn)、點(diǎn)表示的數(shù)分別為、,則、兩點(diǎn)之間的距離,線段的中點(diǎn)表示的數(shù)為.
(問(wèn)題情境)
在數(shù)軸上,點(diǎn)表示的數(shù)為-20,點(diǎn)表示的數(shù)為10,動(dòng)點(diǎn)從點(diǎn)出發(fā)沿?cái)?shù)軸正方向運(yùn)動(dòng),同時(shí),動(dòng)點(diǎn)也從點(diǎn)出發(fā)沿?cái)?shù)軸負(fù)方向運(yùn)動(dòng),已知運(yùn)動(dòng)到4秒鐘時(shí),、兩點(diǎn)相遇,且動(dòng)點(diǎn)、運(yùn)動(dòng)的速度之比是(速度單位:單位長(zhǎng)度/秒).
備用圖
(綜合運(yùn)用)
(1)點(diǎn)的運(yùn)動(dòng)速度為______單位長(zhǎng)度/秒,點(diǎn)的運(yùn)動(dòng)速度為______單位長(zhǎng)度/秒;
(2)當(dāng)時(shí),求運(yùn)動(dòng)時(shí)間;
(3)若點(diǎn)、在相遇后繼續(xù)以原來(lái)的速度在數(shù)軸上運(yùn)動(dòng),但運(yùn)動(dòng)的方向不限,我們發(fā)現(xiàn):隨著動(dòng)點(diǎn)、的運(yùn)動(dòng),線段的中點(diǎn)也隨著運(yùn)動(dòng).問(wèn)點(diǎn)能否與原點(diǎn)重合?若能,求出從、相遇起經(jīng)過(guò)的運(yùn)動(dòng)時(shí)間,并直接寫出點(diǎn)的運(yùn)動(dòng)方向和運(yùn)動(dòng)速度;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校組織340名師生進(jìn)行長(zhǎng)途考察活動(dòng),帶有行李170件,計(jì)劃租用甲、乙兩種型號(hào)的汽車共10輛.經(jīng)了解,甲車每輛最多能載40人和16件行李,乙車每輛最多能載30人和20件行李.
(1)請(qǐng)你幫助學(xué)校設(shè)計(jì)所有可行的租車方案.
(2)如果甲車的租金為每輛2 000元,乙車的租金為每輛1 800元,問(wèn)哪種可行方案使租車費(fèi)用最。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料:
某些代數(shù)恒等式可用一些卡片拼成的圖形的面積來(lái)解釋.例如,圖①可以解釋,因此,我們可以利用這種方法對(duì)某些多項(xiàng)式進(jìn)行因式分解.
根據(jù)閱讀材料回答下列問(wèn)題:
(1)如圖②所表示的因式分解的恒等式是________________________.
(2)現(xiàn)有足夠多的正方形和長(zhǎng)方形卡片(如圖③),試畫出一個(gè)用若干張1號(hào)卡片、2號(hào)卡片和3號(hào)卡片拼成的長(zhǎng)方形(每?jī)蓮埧ㄆg既不重疊,也無(wú)空隙),使該長(zhǎng)方形的面積為,并利用你畫的長(zhǎng)方形的面積對(duì)進(jìn)行因式分解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,我們把對(duì)角線互相垂直的四邊形叫做垂美四邊形.
(l)概念理解:如圖2,在四邊形ABCD中,AB=AD,CB=CD,問(wèn)四邊形ABCD是垂美四邊形嗎?請(qǐng)說(shuō)明理由.
(2)性質(zhì)探宄:試探索垂美四邊形ABCD兩組對(duì)邊AB,CD與BC,AD之間的數(shù)量關(guān)系.
猜想結(jié)論:(要求用文字語(yǔ)言敘述)
寫出證明過(guò)程(先畫出圖形,寫出已知、求證)
(3)問(wèn)題解決:如圖3,分別以Rt△ACB的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連接CE,BG,GE,已知AC=4,AB=5,求GE長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著粵港澳大灣區(qū)建設(shè)的加速推進(jìn),廣東省正加速布局以5G等為代表的戰(zhàn)略性新興產(chǎn)業(yè),據(jù)統(tǒng)計(jì),目前廣東5G基站的數(shù)量約1.5萬(wàn)座,計(jì)劃到2020年底,全省5G基站數(shù)是目前的4倍,到2022年底,全省5G基站數(shù)量將達(dá)到17.34萬(wàn)座。
(1)計(jì)劃到2020年底,全省5G基站的數(shù)量是多少萬(wàn)座?;
(2)按照計(jì)劃,求2020年底到2022年底,全省5G基站數(shù)量的年平均增長(zhǎng)率。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店在2015年至2017年期間銷售一種禮盒。2015年,該商店用3 500元購(gòu)進(jìn)了這種禮盒并且全部售完;2017年,這種禮盒的進(jìn)價(jià)比2015年下降了11元/盒,該商店用2 400元購(gòu)進(jìn)了與2015年相同數(shù)量的禮盒也全部售完,禮盒的售價(jià)均為60元/盒.
(1)2015年這種禮盒的進(jìn)價(jià)是多少元/盒?
(2)若該商店每年銷售這種禮盒所獲利潤(rùn)的年增長(zhǎng)率相同,問(wèn)年增長(zhǎng)率是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com