【題目】如圖1,我們把對(duì)角線互相垂直的四邊形叫做垂美四邊形.
(l)概念理解:如圖2,在四邊形ABCD中,AB=AD,CB=CD,問(wèn)四邊形ABCD是垂美四邊形嗎?請(qǐng)說(shuō)明理由.
(2)性質(zhì)探宄:試探索垂美四邊形ABCD兩組對(duì)邊AB,CD與BC,AD之間的數(shù)量關(guān)系.
猜想結(jié)論:(要求用文字語(yǔ)言敘述)
寫出證明過(guò)程(先畫出圖形,寫出已知、求證)
(3)問(wèn)題解決:如圖3,分別以Rt△ACB的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連接CE,BG,GE,已知AC=4,AB=5,求GE長(zhǎng).
【答案】(1)四邊形ABCD是垂美四邊形,理由見(jiàn)解析;(2)猜想結(jié)論:垂美四邊形的兩組對(duì)邊的平方和相等,過(guò)程見(jiàn)解析;(3)GE=
【解析】試題分析:(1)根據(jù)垂直平分線的判定定理可得,直線AC是線段BD的垂直平分線,結(jié)論得證;
(2)根據(jù)垂直的定義可得∠AED=∠AEB=∠BEC=∠CED=90°,由勾股定理得AD2+BC2=AE2+DE2+BE2+CE2,進(jìn)而得到答案;
(3)連接CG、BE,由題意易得△GAB≌△CAE,可知∠ABG=∠AEC,進(jìn)而得到四邊形BCGE是垂美四邊形;接下來(lái)根據(jù)垂美四邊形的性質(zhì)、勾股定理以及(2)的結(jié)論進(jìn)行計(jì)算求解,即可完成解答.
試題解析:
解:(1)四邊形ABCD是垂美四邊形.
證明:∵AB=AD,
∴點(diǎn)A在線段BD的垂直平分線上,
∵CB=CD,
∴點(diǎn)C在線段BD的垂直平分線上,
∴直線AC是線段BD的垂直平分線,
∴AC⊥BD,即四邊形ABCD是垂美四邊形;
(2)猜想結(jié)論:垂美四邊形的兩組對(duì)邊的平方和相等.
如圖2,已知四邊形ABCD中,AC⊥BD,垂足為E,
求證:AD2+BC2=AB2+CD2
證明:∵AC⊥BD,
∴∠AED=∠AEB=∠BEC=∠CED=90°,
由勾股定理得,AD2+BC2=AE2+DE2+BE2+CE2,
AB2+CD2=AE2+BE2+CE2+DE2,
∴AD2+BC2=AB2+CD2;
(3)連接CG、BE,
∵∠CAG=∠BAE=90°,
∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,
在△GAB和△CAE中,
,
∴△GAB≌△CAE,
∴∠ABG=∠AEC,又∠AEC+∠AME=90°,
∴∠ABG+∠AME=90°,即CE⊥BG,
∴四邊形CGEB是垂美四邊形,
由(2)得,CG2+BE2=CB2+GE2,
∵AC=4,AB=5,
∴BC=3,CG=4,BE=5,
∴GE2=CG2+BE2﹣CB2=73,
∴GE=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下四個(gè)命題:①如果三角形一邊的中點(diǎn)到其他兩邊距離相等,那么這個(gè)三角形一定是等腰三角形:②兩條對(duì)角線互相垂直且相等的四邊形是正方形:③一組數(shù)據(jù)2,4,6.4的方差是2;④△OAB與△OCD是以O(shè)為位似中心的位似圖形,且位似比為1:4,已知∠OCD=90°,OC=CD.點(diǎn)A、C在第一象限.若點(diǎn)D坐標(biāo)為(2 ,0),則點(diǎn)A坐標(biāo)為( , ),其中正確命題有(填正確命題的序號(hào)即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小華和小容都想?yún)⒓訉W(xué)校組織的數(shù)學(xué)興趣小組,根據(jù)學(xué)校分配的名額,他們兩人只能有1人參加.數(shù)學(xué)老師想出了一個(gè)主意:如圖,給他們六張卡片,每張卡片上都有一些數(shù),將化簡(jiǎn)后的數(shù)在數(shù)軸上表示出來(lái),再用“<”連接起來(lái),誰(shuí)先按照要求做對(duì),誰(shuí)就參加興趣小組,你也一起來(lái)試一試吧!
-(-2) (-1)3 -|-3| 0的相反數(shù)
① 、凇 、邸 、
-0.4的倒數(shù) 比-1大2.5的數(shù)
⑤ ⑥
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“十·一”黃金周期間,我市某景點(diǎn)旅游區(qū)在7天假期中每天旅游的人數(shù)變化如下表:
(正數(shù)表示比前一天多的人數(shù),負(fù)數(shù)表示比前一天少的人數(shù)).(單位:萬(wàn)人)
日 期 | 1日 | 2日 | 3日 | 4日 | 5日 | 6日 | 7日 |
人數(shù)變化 | + 1.2 | + 1.2 | + 0.4 | – 0.2 | – 0.8 | + 0.2 | – 1.4 |
若9月30日的旅游人數(shù)記為3萬(wàn)人,則
(1)請(qǐng)求出10月5日的旅游人數(shù);
(2)請(qǐng)判斷7天內(nèi)旅游人數(shù)最多的是哪一天?最少的是哪一天?它們相差多少萬(wàn)人?
(3)若該景點(diǎn)門票為每人20元,請(qǐng)算出該景點(diǎn)黃金周期間的收入共多少萬(wàn)元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB是⊙O的直徑,C是⊙O上一點(diǎn),∠BAC的平分線交⊙O于點(diǎn)D,交⊙O的切線BE于點(diǎn)E,過(guò)點(diǎn)D作DF⊥AC,交AC的延長(zhǎng)線于點(diǎn)F.
(1)求證:DF是⊙O的切線;
(2)若DF=3,DE=2 ①求 值;
②求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a,b,c為非零的實(shí)數(shù),則的可能值的個(gè)數(shù)為( 。
A. 4 B. 5 C. 6 D. 7
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某村莊計(jì)劃建造A,B兩種型號(hào)的沼氣池共20個(gè),以解決該村所有農(nóng)戶的燃料問(wèn)題.兩種型號(hào)沼氣池的占地面積和可供使用農(nóng)戶數(shù)見(jiàn)下表:
型號(hào) | 占地面積 (單位:m2/個(gè)) | 可供使用農(nóng)戶數(shù) (單位:戶/個(gè)) |
A | 15 | 18 |
B | 20 | 30 |
已知可供建造沼氣池的占地面積不超過(guò)365m2,該村農(nóng)戶共有492戶.
(1)如何合理分配建造A,B型號(hào)“沼氣池”的個(gè)數(shù)才能滿足條件?滿足條件的方案有幾種?通過(guò)計(jì)算分別寫出各種方案.
(2)請(qǐng)寫出建造A、B兩種型號(hào)的“沼氣池”的總費(fèi)用y和建造A型“沼氣池”個(gè)數(shù)x之間的函數(shù)關(guān)系式;
(3)若A型號(hào)“沼氣池”每個(gè)造價(jià)2萬(wàn)元,B型號(hào)“沼氣池”每個(gè)造價(jià)3萬(wàn)元,試說(shuō)明在(1)中的各種建造方案中,哪種建造方案最省錢,最少的費(fèi)用需要多少萬(wàn)元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】四邊形ABCD是正方形,對(duì)角線AC,BD相交于點(diǎn)O.
(1)如圖1,點(diǎn)P是正方形ABCD外一點(diǎn),連接OP,以OP為一邊,作正方形OPMN,且邊ON與邊BC相交,連接AP,BN.
①依題意補(bǔ)全圖1;
②判斷AP與BN的數(shù)量關(guān)系及位置關(guān)系,寫出結(jié)論并加以證明;
(2)點(diǎn)P在AB延長(zhǎng)線上,且∠APO=30°,連接OP,以OP為一邊,作正方形OPMN,且邊ON與BC的延長(zhǎng)線恰交于點(diǎn)N,連接CM,若AB=2,求CM的長(zhǎng)(不必寫出計(jì)算結(jié)果,簡(jiǎn)述求CM長(zhǎng)的過(guò)程)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com