【題目】以下四個(gè)命題:①如果三角形一邊的中點(diǎn)到其他兩邊距離相等,那么這個(gè)三角形一定是等腰三角形:②兩條對角線互相垂直且相等的四邊形是正方形:③一組數(shù)據(jù)2,4,6.4的方差是2;④△OAB與△OCD是以O(shè)為位似中心的位似圖形,且位似比為1:4,已知∠OCD=90°,OC=CD.點(diǎn)A、C在第一象限.若點(diǎn)D坐標(biāo)為(2 ,0),則點(diǎn)A坐標(biāo)為( , ),其中正確命題有(填正確命題的序號即可)
【答案】①③④
【解析】解:①如果三角形一邊的中點(diǎn)到其他兩邊距離相等,那么這個(gè)三角形一定是等腰三角形,故①正確; ②兩條對角線互相垂直且相等的四邊形是正方形或等腰梯形,故②錯(cuò)誤;
③一組數(shù)據(jù)2,4,6.4的方差是2,故③正確;
④△OAB與△OCD是以O(shè)為位似中心的位似圖形,且位似比為1:4,已知∠OCD=90°,OC=CD.
點(diǎn)A、C在第一象限.若點(diǎn)D坐標(biāo)為(2 ,0)得,C( , ).
由位似比為1:4,得
點(diǎn)A坐標(biāo)為( , ),故④正確;
所以答案是:①③④.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用命題與定理的相關(guān)知識可以得到問題的答案,需要掌握我們把題設(shè)、結(jié)論正好相反的兩個(gè)命題叫做互逆命題.如果把其中一個(gè)叫做原命題,那么另一個(gè)叫做它的逆命題;經(jīng)過證明被確認(rèn)正確的命題叫做定理.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,D是AB的中點(diǎn),E是AC上一點(diǎn),EF∥AB, DF∥BE.請你猜想DF與AE的關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①所示,將一副三角尺的直角頂點(diǎn)重合在點(diǎn)O處.
(1)①∠AOD和∠BOC相等嗎?(不要求說明理由)
②∠AOC和∠BOD在數(shù)量上有何種關(guān)系?(不要求說明理由)
(2)若將這副三角尺按如圖②擺放,三角尺的直角頂點(diǎn)重合在點(diǎn)O處.
①∠AOD和∠BOC相等嗎?說明理由;
②∠AOC和∠BOD在數(shù)量上有何種關(guān)系?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場籌集資金12.8萬元,一次性購進(jìn)空調(diào)、彩電共30臺.根據(jù)市場需要,這些空調(diào)、彩電可以全部銷售,全部銷售后利潤不少于1.5萬元,其中空調(diào)、彩電的進(jìn)價(jià)和售價(jià)見表格.
空調(diào) | 彩電 | |
進(jìn)價(jià)(元/臺) | 5400 | 3500 |
售價(jià)(元/臺) | 6100 | 3900 |
設(shè)商場計(jì)劃購進(jìn)空調(diào)x臺,空調(diào)和彩電全部銷售后商場獲得的利潤為y元.
(1)試寫出y與x的函數(shù)關(guān)系式;
(2)商場有哪幾種進(jìn)貨方案可供選擇?
(3)選擇哪種進(jìn)貨方案,商場獲利最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某服裝廠生產(chǎn)一種西裝和領(lǐng)帶,西裝每套定價(jià)元,領(lǐng)帶每條定價(jià)元.廠方在開展促銷活動(dòng)期間,可以同時(shí)向客戶提供兩種優(yōu)惠方案:
買一套西裝送一條領(lǐng)帶;
西裝和領(lǐng)帶都按定價(jià)的付款.現(xiàn)某客戶要到該服裝廠購買西裝套,領(lǐng)帶條超過.
若該客戶按方案購買,需付款________元(用含的式子表示);若該客戶按方案購買,需付款________元(用含的式子表示);
若,通過計(jì)算說明此時(shí)按哪種方案購買較為合算?
當(dāng)時(shí),你能給出一種更為省錢的購買方案嗎?試寫出你的購買方法,并計(jì)算出所需的錢數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,CA=CB,CD=CE,∠ACB=∠DCE=α,AD,BE相交于點(diǎn)M,連接CM.
(1)求證:BE=AD;
(2)用含α的式子表示∠AMB的度數(shù);
(3)當(dāng)α=90°時(shí),取AD,BE的中點(diǎn)分別為點(diǎn)P,Q,連接CP,CQ,PQ,如圖②,判斷△CPQ的形狀,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,開口向下的拋物線y=ax2+bx+c交y軸于A點(diǎn),交x軸于B、C兩點(diǎn)(點(diǎn)B在點(diǎn)C的左側(cè)).已知A點(diǎn)坐標(biāo)為(0,﹣5),BC=4,拋物線過點(diǎn)(2,3).
(1)求此拋物線的解析式;
(2)記拋物線的頂點(diǎn)為M,求△ACM的面積;
(3)在拋物線上是否存在點(diǎn)P,使△ACP是以AC為直角邊的直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某年6月份的日歷.
(1)細(xì)心觀察:小張一家外出旅游5天,這5天的日期之和是20.小張旅游最后一天是 _____________號.
(2)如果用一個(gè)長方形方框任意框出33個(gè)數(shù),從左下角到右上角的“對角線”上的3個(gè)數(shù)字的和54,那么這9個(gè)數(shù)的和為______________,在這9個(gè)日期中,最后一天是_____________號.
(3)在這個(gè)月的日歷中,用方框能否圈出“總和為135”的9個(gè)數(shù)?如果能,請求出這9個(gè)日期分別是幾號;如果不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,我們把對角線互相垂直的四邊形叫做垂美四邊形.
(l)概念理解:如圖2,在四邊形ABCD中,AB=AD,CB=CD,問四邊形ABCD是垂美四邊形嗎?請說明理由.
(2)性質(zhì)探宄:試探索垂美四邊形ABCD兩組對邊AB,CD與BC,AD之間的數(shù)量關(guān)系.
猜想結(jié)論:(要求用文字語言敘述)
寫出證明過程(先畫出圖形,寫出已知、求證)
(3)問題解決:如圖3,分別以Rt△ACB的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連接CE,BG,GE,已知AC=4,AB=5,求GE長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com