【題目】如圖,在ABC中,CDAB于點D,AC=4,BC=3,DB=,

(1)求CD、AD的長

(2)判斷ABC的形狀,并說明理由。

【答案】(1)、CD=,AD=;(2)、直角三角形,理由見解析

【解析】

試題分析:(1)、根據(jù)CDAB,BC=3,BD=得出CDB和ADC為直角三角形,然后根據(jù)直角三角形的勾股定理分別求出CD和AD的長度;(2)、根據(jù)題意得出AC,BC和AB的長度,然后根據(jù)勾股定理的逆定理得出三角形為直角三角形.

試題解析:(1)、CDAB,BC=3,BD= ∴∠CDB=CDA=90° 在RtCDB中,由勾股定理可得:

CD=

在RtADC中,AC=4,CD=,由勾股定理可得:AD=

(2)ABC為直角三角形

ABC中,AC=4,BC=3,AB=AD+BD=+=5

由勾股定理的逆定理可得:ABC為直角三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC 中,CDAB,EFAB,垂足分別為DF

1)若∠1=2,試說明DGBC

2)若CD 平分∠ACB,∠A=60°,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等腰三角形一腰長為5,一邊上的高為3,則底邊長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ 和△ 都是等腰直角三角形, , , 的中點.若將△ 繞點 旋轉(zhuǎn)一周,則線段 長度的取值范圍是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題:

有一個角為的等腰三角形是等邊三角形;

等腰直角三角形一定是軸對稱圖形;

有一條直角邊對應(yīng)相等的兩個直角三角形全等;

到線段兩端距離相等的點在這條線段的垂直平分線上.

正確的個數(shù)有  

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料: 小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式子的平方,如:,善于思考的小明進行了以下探索:

設(shè)(其中均為整數(shù)),則有

.這樣小明就找到了一種把部分的式子化為平方式的方法.

請你仿照小明的方法探索并解決下列問題:

均為正整數(shù)時,若,用含m、n的式子分別表示,得      ;

2)利用所探索的結(jié)論,找一組正整數(shù),填空:    (      )2;

3)若,且均為正整數(shù),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】春節(jié)期間,重百超市推出了甲、乙、丙、丁四種禮品套餐組合:甲套餐每袋裝有15A禮盒,10B禮盒,10C禮盒;乙套餐每袋裝有5A禮盒,7B禮盒,6C禮盒;丙套餐每袋裝有7A禮盒,8B禮盒,9C禮盒;丁套餐每袋裝有3A禮盒,4B禮盒,4C禮盒,若一個甲套餐售價1800元,利潤率為,一個乙和一個丙套餐一共成本和為1830元,且一個A禮盒的利潤率為,問一個丁套餐的利潤率為______利潤率

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,則一次函數(shù)y=bx+b2﹣4ac與反比例函數(shù)y= 在同一坐標系內(nèi)的圖象大致為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面說法正確的個數(shù)有(

1)二元一次方程組的兩個方程的所有解,叫做二元一次方程組的解;

2)如果,則

3)三角形的外角等于與它不相鄰的兩個內(nèi)角的和;

4)多邊形內(nèi)角和等于;

5)一組數(shù)據(jù)12,3,4,5的眾數(shù)是0

A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊答案