【題目】如圖,在△ABC 中,CD⊥AB,EF⊥AB,垂足分別為D、F.
(1)若∠1=∠2,試說明DG∥BC.
(2)若CD 平分∠ACB,∠A=60°,求∠B的度數(shù).
【答案】(1)證明見解析;(2)∠B=60°.
【解析】
(1)根據(jù)垂直于同一條直線的兩直線平行,先判定EF∥CD,根據(jù)兩直線平行同位角相等,得∠1=∠BCD;根據(jù)等量代換可得∠DCB=∠2,從而根據(jù)內錯角相等,兩直線平行得證;
(2)根據(jù)CD⊥AB得出∠ADC的度數(shù),從而求出∠ACD的度數(shù),再根據(jù)CD平分∠ACB,進而求出∠ACB的度數(shù),再根據(jù)三角形內角和定理,可得∠B的度數(shù),.
(1)∵CD⊥AB,EF⊥AB
∴∠EFB=90°,∠CDB=90°
∴∠EFB=∠CDB
∴EF∥CD
∴∠1=∠BCD
∵∠1=∠2
∴∠2=∠BCD
∴DG∥BC
(2)∵CD⊥AB,
∴∠CDA=90°,
∵∠A=60°,
∴∠ACD=30°,
∵CD平分∠ACB,
∴∠ACD=∠ACB,
∴∠ACB=60°,
∵∠A=60°,
∴∠B=180°-∠ACB-∠A=60°.
科目:初中數(shù)學 來源: 題型:
【題目】對于平面直角坐標系 xOy 中的點 A,給出如下定義:若存在點 B(不與點 A 重合,且直線 AB 不與 坐標軸平行或重合),過點 A 作直線 m∥x 軸,過點 B 作直線 n∥y 軸,直線 m,n 相交于點 C.當線段 AC,BC 的長度相等時,稱點 B 為點 A 的等距點,稱三角形 ABC 的面積為點 A 的等距面積. 例如:如 圖,點 A(2,1),點 B(5,4),因為 AC= BC=3,所以 B 為點 A 的等距點,此時點 A 的等距面積為.
(1)點 A 的坐標是(0,1),在點 B1(2,3),B2 (1, 1) , B3 (3, 2) 中,點A的等距點為 .
(2)點 A 的坐標是 (3,1) ,點 A 的等距點 B 在第三象限,
①若點 B 的坐標是 (5, 1) ,求此時點 A 的等距面積;
②若點 A 的等距面積不小于 2,請直接寫出點 B 的橫坐標 t 的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有筐白菜,以每筐千克為標準,超過或不足的分別用正、負來表示,記錄如下:
與標準質量的差單位:千克 | ||||||
筐 數(shù) |
(1)與標準質量比較,筐白菜總計超過或不足多少千克?
(2)若白菜每千克售價元,則出售這筐白菜可賣多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線與x軸交于點,與y軸交于點,把直線沿x軸的負方向平移6個單位得到直線,直線與x軸交于點C,與y軸交于點D,連接BC.
如圖,分別求出直線和的函數(shù)解析式;
如果點P是第一象限內直線上一點,當四邊形DCBP是平行四邊形時,求點P的坐標;
如圖,如果點E是線段OC的中點,,交直線于點F,在y軸的正半軸上能否找到一點M,使是等腰三角形?如果能,請求出所有符合條件的點M的坐標;如果不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2﹣2ax+c(a≠0)交x軸于A,B兩點,A點坐標為(3,0),與y軸交于點C(0,4),以OC、OA為邊作矩形OADC交拋物線于點G.
(1)求拋物線的解析式;
(2)拋物線的對稱軸l在邊OA(不包括O、A兩點)上平行移動,分別交x軸于點E,交CD于點F,交AC于點M,交拋物線于點P,若點M的橫坐標為m,請用含m的代數(shù)式表示PM的長;
(3)在(2)的條件下,連結PC,則在CD上方的拋物線部分是否存在這樣的點P,使得以P、C、F為頂點的三角形和△AEM相似?若存在,求出此時m的值,并直接判斷△PCM的形狀;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上,點C的坐標為(4,﹣1).
(1)試作出△ABC以C為旋轉中心,沿順時針方向旋轉90°后的圖形△A1B1C;
(2)以原點O為對稱中心,再畫出與△ABC關于原點O對稱的△A2B2C2,并寫出點C2的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)=的圖像與正比例函數(shù)=的圖像相交于點A(2,),與軸相交于點B.
(1)求、的值;
(2)在軸上存在點C,使得△AOC的面積等于△AOB的面積,求點C的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com