【題目】某高新企業(yè)員工的工資由基礎(chǔ)工資、績效工資和工齡工資三部分組成,其中工齡工資的制定充分了考慮員工對企業(yè)發(fā)展的貢獻,同時提高員工的積極性,控制員工的流動率,對具有中職以上學歷員工制定如下的工齡工資方案. Ⅰ.工齡工資分為社會工齡工資和企業(yè)工齡工資;
Ⅱ.社會工齡=參加本企業(yè)工作時年齡﹣18,企業(yè)工齡=現(xiàn)年年齡﹣參加本企業(yè)工作時年齡.
Ⅲ.當年工作時間計入當年工齡
Ⅳ.社會工齡工資y1(元/月)與社會工齡x(年)之間的函數(shù)關(guān)系式如①圖所示,企業(yè)工齡工資y2(元/月)與企業(yè)工齡x(年)之間的函數(shù)關(guān)系如圖②所示.
請解決以下問題

(1)求出y1、y2與工齡x之間的函數(shù)關(guān)系式;
(2)現(xiàn)年28歲的高級技工小張從18歲起一直實行同樣工齡工資制度的外地某企業(yè)工作,為了方便照顧老人與小孩,今年小張回鄉(xiāng)應聘到該企業(yè),試計算第一年工齡工資每月下降多少元?
(3)已經(jīng)在該企業(yè)工作超過3年的李工程師今年48歲,試求出他的工資最高每月多少元?

【答案】
(1)解:設(shè)y1與x之間的函數(shù)關(guān)系式為y1=kx,

由題意,得100=10k,

解得:k=10

∴y1=10x(x≥0,x為整數(shù));

當0≤x≤3時,y2與x之間的函數(shù)關(guān)系式為y2=k2x,

由題意,得60=3k2

∴k2=20,

∴y2=20x,

當3<x≤32時,設(shè)y2=a(x﹣23)2+860,

由題意,得698=a(32﹣23)2+860,

解得:a=﹣2,

∴y2=﹣2(x﹣23)2+860,

當32<x≤42時,由圖象,得y2=698.

∴y2= ;


(2)解:小張在原廠的社會工齡為:18﹣18=0年,企業(yè)工齡為:28﹣28=10年

y1=0,y2=522,

∴在小張在原廠的工齡工資為:0+522=522元,

當小張回家鄉(xiāng)到后進該企業(yè),小張的社會工齡為:28﹣18=10年,企業(yè)工齡為:28﹣28=0年

∴小張的工齡工資為;y1+y2=10×10+20×0=100

∴小張的第一年工齡工資每月下降了:522﹣100=422元,

答:第一年每月工齡工資下降422元;


(3)解:依題知要李程師的總工齡為:48﹣18=30,設(shè)李工程師的工齡工資為y,在本企業(yè)工作x年,

由題意,得3<x≤30

∴y=y1+y2=10(30﹣x)+[﹣2(x﹣23)2+860]=﹣2(x﹣20.5)2+942.5,

∵a=﹣2<0,

∴拋物線開口向下,對稱軸是x=20.5,

∵x為整數(shù),

∴當x=20或21時,y最大,且最大值為942,

∴李工程師的工齡工資最高為942元/月.


【解析】(1)結(jié)合函數(shù)圖象根據(jù)待定系數(shù)法就可以得出y1、y2與工齡x之間的函數(shù)關(guān)系式,注意y2與x的函數(shù)關(guān)系式需要分段討論;(2)根據(jù)(1)的解析式分別求出小張在原廠的工齡工資和回鄉(xiāng)后的工齡工資,求出其差就可以了;(3)設(shè)李工程師的工齡工資為y,在本企業(yè)工作x年,根據(jù)工齡工資=社會工齡工資+企業(yè)工齡工資求出y與x之間的關(guān)系式,由二次函數(shù)的性質(zhì)就可以求出結(jié)論.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】哈佳高鐵建設(shè)工程中,有一段6000米的路段由甲、乙兩個工程隊負責完成.已知甲工程隊每天完成的工作量是乙工程隊每天完成的工作量的2倍,且甲工程隊單獨完成此項工程比乙工程隊單獨完成此項工程少用30天.
(1)求甲、乙兩個工程隊每天各完成多少米?
(2)由于施工條件限制,每天只能一個工程隊施工,但是工程指揮部仍然要求工期不能超過50天,求甲工程隊至少施工多少天?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某飛機于空中探測某座山的高度,在點A處飛機的飛行高度是AF=3700米,從飛機上觀測山頂目標C的俯角是45°,飛機繼續(xù)以相同的高度飛行300米到B處,此時觀測目標C的俯角是50°,求這座山的高度CD.
(參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,tan50°≈1.20).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某電器超市銷售每臺進價分別為200元、170元的A、B兩種型號的電風扇,下表是近兩周的銷售情況:

銷售時段

銷售數(shù)量

銷售收入

A種型號

B種型號

第一周

3臺

5臺

1800元

第二周

4臺

10臺

3100元

(進價、售價均保持不變,利潤=銷售收入﹣進貨成本)
(1)求A、B兩種型號的電風扇的銷售單價;
(2)若超市準備用不多于5400元的金額再采購這兩種型號的電風扇共30臺,求A種型號的電風扇最多能采購多少臺?
(3)在(2)的條件下,超市銷售完這30臺電風扇能否實現(xiàn)利潤為1400元的目標?若能,請給出相應的采購方案;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A(0,2)、B(2 ,2)、C(0,4),過點C向右做平行于x軸的射線,點P是射線上的動點,連接AP,以AP為邊在左側(cè)作等邊△APQ,連接PB、BA.
(1)當AB∥PQ時,點P的橫坐標是;
(2)當BP∥QA時,點P的橫坐標是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,面積為6的平行四邊形紙片ABCD中,AB=3,∠BAD=45°,按下列步驟裁剪和拼圖.
第一步:如圖①,將平行四邊形紙片沿對角線BD剪開,得到△ABD和△BCD紙片,再將△ABD紙片沿AE剪開(E為BD上任意一點),得到△ABE和△ADE紙片;
第二步:如圖②,將△ABE紙片平移至△DCF處,將△ADE紙片平移至△BCG處;
第三步:如圖③,將△DCF紙片翻轉(zhuǎn)過來使其背面朝上置于△PQM處(邊PQ與DC重合,△PQM和△DCF在DC同側(cè)),將△BCG紙片翻轉(zhuǎn)過來使其背面朝上置于△PRN處,(邊PR與BC重合,△PRN和△BCG在BC同側(cè)).
則由紙片拼成的五邊形PMQRN中,BD= , 對角線MN長度的最小值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=﹣x2+9的頂點為A,曲線DE是雙曲線y= (3≤x≤12)的一部分,記作G1 , 且D(3,m)、E(12,m﹣3),將拋物線y=﹣x2+9水平向右移動a個單位,得到拋物線G2

(1)求雙曲線的解析式;
(2)設(shè)拋物線y=﹣x2+9與x軸的交點為B、C,且B在C的左側(cè),則線段BD的長為;
(3)點(6,n)為G1與G2的交點坐標,求a的值.
(4)解:在移動過程中,若G1與G2有兩個交點,設(shè)G2的對稱軸分別交線段DE和G1于M、N兩點,若MN< ,直接寫出a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系內(nèi),小正方形網(wǎng)格的邊長為1個單位長度,△ABC的三個頂點的坐標分別為A(﹣1,3),B(﹣4,0),C(0,0)

(1)畫出將△ABC向上平移1個單位長度,再向右平移5個單位長度后得到的△A1B1C1;
(2)畫出將△ABC繞原點O順時針方向旋轉(zhuǎn)90°得到△A2B2O;
(3)在x軸上存在一點P,滿足點P到A1與點A2距離之和最小,請直接寫出P點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB,AD與⊙O相切于點B,D,C為⊙O上一點,且∠BCD=140°,則∠A的度數(shù)是(  )

A.70°
B.105°
C.100°
D.110°

查看答案和解析>>

同步練習冊答案