【題目】如圖,已知拋物線y=﹣x2+9的頂點為A,曲線DE是雙曲線y= (3≤x≤12)的一部分,記作G1 , 且D(3,m)、E(12,m﹣3),將拋物線y=﹣x2+9水平向右移動a個單位,得到拋物線G2

(1)求雙曲線的解析式;
(2)設(shè)拋物線y=﹣x2+9與x軸的交點為B、C,且B在C的左側(cè),則線段BD的長為
(3)點(6,n)為G1與G2的交點坐標,求a的值.
(4)解:在移動過程中,若G1與G2有兩個交點,設(shè)G2的對稱軸分別交線段DE和G1于M、N兩點,若MN< ,直接寫出a的取值范圍.

【答案】
(1)

把D(3,m)、E(12,m﹣3)代入y= ,解得

所以雙曲線的解析式為y= ;


(2)2
(3)

解:把(6,n)代入y= 得6n=12,解得n=2,即交點坐標為(6,2),

拋物線G2的解析式為y=﹣(x﹣a)2+9,

把(6,2)代入y=﹣(x﹣a)2+9得﹣(6﹣a)2+9=2,解得a=6± ,

即a的值為6±


(4)

拋物線G2的解析式為y=﹣(x﹣a)2+9,

把D(3,4)代入y=﹣(x﹣a)2+9得﹣(3﹣a)2+9=4,解得a=3﹣ 或a=3+ ;

把E(12,1)代入y=﹣(x﹣a)2+9得﹣(12﹣a)2+9=1,解得a=12﹣2 或a=12+2 ;

∵G1與G2有兩個交點,

∴3+ ≤a≤12﹣2

設(shè)直線DE的解析式為y=px+q,

把D(3,4),E(12,1)代入得 ,解得

∴直線DE的解析式為y=﹣ x+5,

∵G2的對稱軸分別交線段DE和G1于M、N兩點,

∴M(a,﹣ a+5),N(a, ),

∵MN< ,

∴﹣ a+5﹣ ,

整理得a2﹣13a+36>0,即(a﹣4)(a﹣9)>0,

∴a<4或a>9,

∴a的取值范圍為9<a≤12﹣2


【解析】解:(2)當(dāng)y=0時,﹣x2+9=0,解得x1=﹣3,x2=3,則B(﹣3,0),
而D(3,4),
所以BE= =2
所以答案是2
【考點精析】關(guān)于本題考查的確定一次函數(shù)的表達式和兩點間的距離,需要了解確定一個一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問題的一般方法是待定系數(shù)法;同軸兩點求距離,大減小數(shù)就為之.與軸等距兩個點,間距求法亦如此.平面任意兩個點,橫縱標差先求值.差方相加開平方,距離公式要牢記才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB,AC為⊙O的弦,AB=AC,連接AO.
(1)如圖l,求證:∠OAC=∠OAB;
(2)如圖2,過點B作AC的垂線交⊙O于點D,連接CD,設(shè)AO的延長線交BD于點E,求證:BE=CD;
(3)在(2)的條件下,如圖3,點F,G分別在CD,BD的延長線上,連接AG,AF,若CF×AG=8,∠GAB=45°+ ∠GAE,∠B=50°,求△ACF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,AD=8,AB=6,點E為射線DC上一個動點,把△ADE沿AE折疊,使點D落在點F處,若△CEF為直角三角形時,DE的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某高新企業(yè)員工的工資由基礎(chǔ)工資、績效工資和工齡工資三部分組成,其中工齡工資的制定充分了考慮員工對企業(yè)發(fā)展的貢獻,同時提高員工的積極性,控制員工的流動率,對具有中職以上學(xué)歷員工制定如下的工齡工資方案. Ⅰ.工齡工資分為社會工齡工資和企業(yè)工齡工資;
Ⅱ.社會工齡=參加本企業(yè)工作時年齡﹣18,企業(yè)工齡=現(xiàn)年年齡﹣參加本企業(yè)工作時年齡.
Ⅲ.當(dāng)年工作時間計入當(dāng)年工齡
Ⅳ.社會工齡工資y1(元/月)與社會工齡x(年)之間的函數(shù)關(guān)系式如①圖所示,企業(yè)工齡工資y2(元/月)與企業(yè)工齡x(年)之間的函數(shù)關(guān)系如圖②所示.
請解決以下問題

(1)求出y1、y2與工齡x之間的函數(shù)關(guān)系式;
(2)現(xiàn)年28歲的高級技工小張從18歲起一直實行同樣工齡工資制度的外地某企業(yè)工作,為了方便照顧老人與小孩,今年小張回鄉(xiāng)應(yīng)聘到該企業(yè),試計算第一年工齡工資每月下降多少元?
(3)已經(jīng)在該企業(yè)工作超過3年的李工程師今年48歲,試求出他的工資最高每月多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,河的兩岸l1與l2相互平行,A、B是l1上的兩點,C、D是l2上的兩點,某人在點A處測得∠CAB=90°,∠DAB=30°,再沿AB方向前進20米到達點E(點E在線段AB上),測得∠DEB=60°,求C、D兩點間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次數(shù)學(xué)活動課上,老師帶領(lǐng)學(xué)生去測一條南北流向的河寬,如圖所示,某學(xué)生在河?xùn)|岸點A處觀測到河對岸水邊有一點C,測得C在A北偏西31°的方向上,沿河岸向北前行20米到達B處,測得C在B北偏西45°的方向上,請你根據(jù)以上數(shù)據(jù),幫助該同學(xué)計算出這條河的寬度.(參考數(shù)值:tan31°≈ ,sin31°≈

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形OABC在平面直角坐標系中的位置如圖所示,點B的坐標為(3,4),D是OA的中點,點E在AB上,當(dāng)△CDE的周長最小時,點E的坐標為(  )

A.(3,1)
B.(3,
C.(3,
D.(3,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,從一張腰長為60cm,頂角為120°的等腰三角形鐵皮OAB中剪出一個最大的扇形OCD,用此剪下的扇形鐵皮圍成一個圓錐的側(cè)面(不計損耗),則該圓錐的高為(  )

A.10cm
B.15cm
C.10 cm
D.20 cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩個同心圓,大圓的弦AB與小圓相切于點P,大圓的弦CD經(jīng)過點P,且CD=13,PD=4,則兩圓組成的圓環(huán)的面積是(
A.16π
B.36π
C.52π
D.81π

查看答案和解析>>

同步練習(xí)冊答案