【題目】在矩形ABCD中,AD=8,AB=6,點E為射線DC上一個動點,把△ADE沿AE折疊,使點D落在點F處,若△CEF為直角三角形時,DE的長為 .
【答案】 或8
【解析】解:∵四邊形ABCD是矩形, ∴∠D=∠B=90°,CD=AB=6,
∴AC= = =10,
當△CEF為直角三角形時,有兩種情況:
①當點F落在矩形內(nèi)部時,F(xiàn)落在AC上,如圖1所示.
由折疊的性質(zhì)得:EF=DE,AF=AD=8,
設(shè)DE=x,則EF=x,CE=6﹣x,
∴CE=6﹣x,
在Rt△CEF中,由勾股定理得:
∵EF2+CF2=CE2 ,
∴x2+22=(6﹣x)2 ,
解得x= ,
∴DE= ;
②當點F落在AB邊上時,如圖2所示.
此時ADEF為正方形,
∴DE=AD=8.
③當點F落在AB邊上時,易知BF= =2 ,設(shè)DE=EF=x,
在Rt△EFC中,x2=(6﹣x)2+(8﹣2 )2 ,
∴x= ,
∴DE= ,
綜上所述,BE的長為 或8或 .
所以答案是: 或8.
【考點精析】根據(jù)題目的已知條件,利用矩形的性質(zhì)和翻折變換(折疊問題)的相關(guān)知識可以得到問題的答案,需要掌握矩形的四個角都是直角,矩形的對角線相等;折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應(yīng)點的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和角相等.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,我們把對角線互相垂直的四邊形叫做垂美四邊形.
(1)概念理解:如圖2,在四邊形ABCD中,AB=AD,CB=CD,問四邊形ABCD是垂美四邊形嗎?請說明理由.
(2)性質(zhì)探究:試探索垂美四邊形ABCD兩組對邊AB,CD與BC,AD之間的數(shù)量關(guān)系.
猜想結(jié)論:(要求用文字語言敘述)垂美四邊形兩組對邊的平方和相等
寫出證明過程(先畫出圖形,寫出已知、求證).
(3)問題解決:如圖3,分別以Rt△ACB的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連接CE,BG,GE,已知AC=4,AB=5,求GE長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為建設(shè)生態(tài)平頂山,某校學(xué)生在植樹節(jié)那天,組織九年級八個班的學(xué)生到山頂公園植樹,各班植樹情況如下表:下列說法錯誤的是( )
班 級 | 一 | 二 | 三 | 四 | 五 | 六 | 七 | 八 |
棵 數(shù) | 15 | 18 | 22 | 25 | 29 | 14 | 18 | 19 |
A.這組數(shù)據(jù)的眾數(shù)是18
B.這組數(shù)據(jù)的平均數(shù)是20
C.這組數(shù)據(jù)的中位數(shù)是18.5
D.這組數(shù)據(jù)的方差為0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某飛機于空中探測某座山的高度,在點A處飛機的飛行高度是AF=3700米,從飛機上觀測山頂目標C的俯角是45°,飛機繼續(xù)以相同的高度飛行300米到B處,此時觀測目標C的俯角是50°,求這座山的高度CD.
(參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,tan50°≈1.20).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的袋子中裝有僅顏色不同的2個紅球和2個白球,兩個人依次從袋子中隨機摸出一個小球不放回,則第一個人摸到紅球且第二個人摸到白球的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電器超市銷售每臺進價分別為200元、170元的A、B兩種型號的電風(fēng)扇,下表是近兩周的銷售情況:
銷售時段 | 銷售數(shù)量 | 銷售收入 | |
A種型號 | B種型號 | ||
第一周 | 3臺 | 5臺 | 1800元 |
第二周 | 4臺 | 10臺 | 3100元 |
(進價、售價均保持不變,利潤=銷售收入﹣進貨成本)
(1)求A、B兩種型號的電風(fēng)扇的銷售單價;
(2)若超市準備用不多于5400元的金額再采購這兩種型號的電風(fēng)扇共30臺,求A種型號的電風(fēng)扇最多能采購多少臺?
(3)在(2)的條件下,超市銷售完這30臺電風(fēng)扇能否實現(xiàn)利潤為1400元的目標?若能,請給出相應(yīng)的采購方案;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A(0,2)、B(2 ,2)、C(0,4),過點C向右做平行于x軸的射線,點P是射線上的動點,連接AP,以AP為邊在左側(cè)作等邊△APQ,連接PB、BA.
(1)當AB∥PQ時,點P的橫坐標是;
(2)當BP∥QA時,點P的橫坐標是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+9的頂點為A,曲線DE是雙曲線y= (3≤x≤12)的一部分,記作G1 , 且D(3,m)、E(12,m﹣3),將拋物線y=﹣x2+9水平向右移動a個單位,得到拋物線G2 .
(1)求雙曲線的解析式;
(2)設(shè)拋物線y=﹣x2+9與x軸的交點為B、C,且B在C的左側(cè),則線段BD的長為;
(3)點(6,n)為G1與G2的交點坐標,求a的值.
(4)解:在移動過程中,若G1與G2有兩個交點,設(shè)G2的對稱軸分別交線段DE和G1于M、N兩點,若MN< ,直接寫出a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,⊙M與x軸相切于原點,平行于y軸的直線交圓于P,Q兩點,P點在Q點的下方,若P點坐標是(2,1),則圓心M的坐標是( 。
A.(0,3)
B.(0,2)
C.(0,)
D.(0,)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com