【題目】如圖,某人在山坡坡腳C處測得一座建筑物頂點A的仰角為63.4°,沿山坡向上走到P處再測得該建筑物頂點A的仰角為53°.已知BC=90米,且B、C、D在同一條直線上,山坡坡度i=5:12.
(1)求此人所在位置點P的鉛直高度.(結(jié)果精確到0.1米)
(2)求此人從所在位置點P走到建筑物底部B點的路程(結(jié)果精確到0.1米)
(測傾器的高度忽略不計,參考數(shù)據(jù):tan53°≈,tan63.5°≈2)
【答案】(1)此人所在P的鉛直高度約為14.3米;(2)從P到點B的路程約為127.1米
【解析】分析:(1)過P作PF⊥BD于F,作PE⊥AB于E,設(shè)PF=5x,在Rt△ABC中求出AB,用含x的式子表示出AE,EP,由tan∠APE,求得x即可;(2)在Rt△CPF中,求出CP的長.
詳解:過P作PF⊥BD于F,作PE⊥AB于E,
∵斜坡的坡度i=5:12,
設(shè)PF=5x,CF=12x,
∵四邊形BFPE為矩形,
∴BF=PEPF=BE.
在RT△ABC中,BC=90,
tan∠ACB=,
∴AB=tan63.4°×BC≈2×90=180,
∴AE=AB-BE=AB-PF=180-5x,
EP=BC+CF≈90+120x.
在RT△AEP中,
tan∠APE=,
∴x=,
∴PF=5x=.
答:此人所在P的鉛直高度約為14.3米.
由(1)得CP=13x,
∴CP=13×37.1,BC+CP=90+37.1=127.1.
答:從P到點B的路程約為127.1米.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,點O為坐標(biāo)原點,直線y=-x+4與x軸交于點A,與y軸交于點B.
(1)求點A,B的坐標(biāo);
(2)在直線AB上是否存在點P,使△OAP是以OA為底邊的等腰三角形?若存在,求出點P的坐標(biāo);若不存在,請說明理由;
(3)若將Rt△AOB折疊,使OB邊落在AB上,點O與點D重合,折痕為BC,求點C的坐標(biāo)。
(4)直接寫出折痕BC所在直線的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將邊長為4的正方形置于平面直角坐標(biāo)系第一象限,使AB邊落在x軸正半軸上,且點A的坐標(biāo)是(1,0).
(1)直線y=x﹣經(jīng)過點C,且與x軸交于點E,求四邊形AECD的面積;
(2)若直線l經(jīng)過點E,且將正方形ABCD分成面積相等的兩部分,求直線l的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形ABCD中∠C=55°,∠B=∠D=90°,E,F分別是BC,DC上的點,當(dāng)△EAF周長最小時,∠EAF的度數(shù)為( )
A.55°B.70°C.125°D.110°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC是邊長為5cm的等邊三角形,點P,Q分別從頂點A,B同時出發(fā),沿線段AB,BC運動,且它們的是速度都為1厘米/秒.當(dāng)點P到達(dá)點B時,P、Q兩點停止運動.設(shè)點P的運動時間為t(秒).
(1)當(dāng)運動時間為t秒時,BQ的長為_____厘米,BP的長為______厘米.(用含t的式子表示)
(2)當(dāng)t為何值時,△PBQ是直角三角形.
(3)如圖2,連接AQ、CP,相交于點M,則點P,Q在運動的過程中,∠CMQ會變化嗎?若變化,則說明理由;若不變,請求出它的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知動點A在函數(shù)y=(x>0)的圖象上,AB⊥x軸于點B,AC⊥y軸于點C,延長CA至點D,使AD=AB,延長BA至點E,使AE=AC,直線DE分別交x軸,y軸于點P,Q,當(dāng)QE:DP=9:25時,圖中的陰影部分的面積等于___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,BC邊上的高AG平分∠BAC.
(1)如圖1,求證:AB=AC.
(2)如圖2,點D、E在△ABC的邊BC上,AD=AE,BC=10cm,DE=6cm,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D是BC邊上的一點,AB=DB,BE平分∠ABC,交AC邊于點E,連接DE.
(1)求證:△ABE≌△DBE;
(2)若∠A=100°,∠C=50°,求∠AEB的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com