【題目】直線AB、CD相交于點(diǎn)O,OE平分∠BOD.OF⊥CD,垂足為O,若∠EOF=54°.
(1)求∠AOC的度數(shù);
(2)作射線OG⊥OE,試求出∠AOG的度數(shù).
【答案】(1)72°(2)54°或126°
【解析】
(1)依據(jù)垂線的定義,即可得到∠DOE的度數(shù),再根據(jù)角平分線的定義,即可得到∠BOD的度數(shù),進(jìn)而得出結(jié)論;
(2)分兩種情況討論,依據(jù)垂線的定義以及角平分線的定義,即可得到∠AOG的度數(shù).
(1)∵OF⊥CD,∠EOF=54°,
∴∠DOE=90°﹣54°=36°,
又∵OE平分∠BOD,
∴∠BOD=2∠DOE=72°,
∴∠AOC=72°;
(2)如圖,若OG在∠AOD內(nèi)部,則
由(1)可得,∠BOE=∠DOE=36°,
又∵∠GOE=90°,
∴∠AOG=180°﹣90°﹣36°=54°;
如圖,若OG在∠COF內(nèi)部,則
由(1)可得,∠BOE=∠DOE=36°,
∴∠AOE=180°﹣36°=144°,
又∵∠GOE=90°,
∴∠AOG=360°﹣90°﹣144°=126°.
綜上所述,∠AOG的度數(shù)為54°或126°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩城相距800千米,一輛客車(chē)從甲城開(kāi)往乙城,車(chē)速為千米小時(shí),同時(shí)一輛出租車(chē)從乙城開(kāi)往甲城,車(chē)速為90千米小時(shí),設(shè)客車(chē)行駛時(shí)間為小時(shí)
當(dāng)時(shí),客車(chē)與乙城的距離為多少千米用含a的代數(shù)式表示
已知,丙城在甲、乙兩城之間,且與甲城相距260千米
求客車(chē)與出租車(chē)相距100千米時(shí)客車(chē)的行駛時(shí)間;列方程解答
已知客車(chē)和出租車(chē)在甲、乙之間的服務(wù)站M處相遇時(shí),出租車(chē)乘客小王突然接到開(kāi)會(huì)通知,需要立即返回,此時(shí)小王有兩種返回乙城的方案:
方案一:繼續(xù)乘坐出租車(chē)到丙城,加油后立刻返回乙城,出租車(chē)加油時(shí)間忽略不計(jì);
方案二:在M處換乘客車(chē)返回乙城.
試通過(guò)計(jì)算,分析小王選擇哪種方案能更快到達(dá)乙城?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,每個(gè)小正方形的邊長(zhǎng)為1個(gè)單位,每個(gè)小方格的頂點(diǎn)叫格點(diǎn).
(1)畫(huà)出△ABC向左平移2個(gè)單位,再向上平移3個(gè)單位后得到的△A1B1C1;
(2)圖中AC與A1C1的關(guān)系是: ;
(3)畫(huà)出△ABC中BC邊上的中線AD;
(4)△ACD的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD的外側(cè),作等邊三角形ADE,連接BE,CE.
(1)求證:BE=CE.
(2)求∠BEC的度數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于 的一元二次方程 x2+(2m-1)x+m2=0有兩個(gè)實(shí)數(shù)根 x1 和 x2 .
(1)求實(shí)數(shù) m 的取值范圍;
(2)當(dāng) x12-x22 時(shí),求 m 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,DE垂直平分AB,分別交AB、BC于點(diǎn)D、E,AP平分∠BAC,與DE的延長(zhǎng)線交于點(diǎn)P.
(1)求PD的長(zhǎng)度;
(2)連結(jié)PC,求PC的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線l1對(duì)應(yīng)的函數(shù)表達(dá)式為y=2x-2,直線l1與x軸交于點(diǎn)D.直線l2:y=kx+b與x軸交于點(diǎn)A,且經(jīng)過(guò)點(diǎn)B,直線l1,l2交于點(diǎn)C(m,2).
(1)求點(diǎn)D,點(diǎn)C的坐標(biāo);
(2)求直線l2對(duì)應(yīng)的函數(shù)表達(dá)式;
(3)求△ADC的面積;
(4)利用函數(shù)圖象寫(xiě)出關(guān)于x,y的二元一次方程組的解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,O為直線AB上一點(diǎn),∠COE=90°,OF平分∠AOE.
(1)若∠COF=40°,求∠BOE的度數(shù).
(2)若∠COF=α(0°<α<90°),則∠BOE=______(用含α的式子表示).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com