【題目】如圖,已知等邊△ABC中,點DBC邊的延長線上,CE平分∠ACD,且CE=BD.判斷△ADE的形狀,并說明理由。

【答案】ADE是等邊三角形,理由見解析

【解析】

先證明出ABD≌△ACE,然后進(jìn)一步得出AD=AE,∠BAD=CAE,加上∠DAE=60°,即可證明ADE為等邊三角形.

ADE是等邊三角形,理由如下:

ABC是等邊三角形,

∴∠ACB=B=60°,AB=AC

∴∠ACD=120°,

CE平分∠ACD

∴∠ACE=DCE=60°,

ABDACE中,

AB=AC,∠B=ACE,BD=CE,

∴△ABD≌△ACE(SAS),

AD=AE,∠BAD=CAE,

∴∠BAC+CAD=CAD+DAE

又∵∠BAC=60°

∴∠DAE=60°,

∴△ADE為等邊三角形。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明家準(zhǔn)備裝修一套新住房,若甲、乙兩個裝飾公司,合做需6周完成,需工錢5.2萬元;若甲公司單獨做4周后,剩下的由乙公司來做,還需9周才能完成,需工錢4.8萬元,若只選一個公司單獨完成,從節(jié)約開支角度考慮,小明家是選甲公司、還是乙公司請你說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有、三個居民小區(qū)的位置成三角形,現(xiàn)決定在三個小區(qū)之間修建一個購物超市,使超市到三個小區(qū)的距離相等,則超市應(yīng)建在(

A.在∠A、∠B兩內(nèi)角平分線的交點處

B.AC、BC兩邊垂直平分線的交點處

C.ACBC兩邊高線的交點處

D.AC、BC兩邊中線的交點處

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(閱讀)如圖1,等邊△ABC中,PAC邊上一點,QCB延長線上一點,若APBQ.則過PPFBCABF,可證△APF是等邊三角形,再證△PDFQDB可得DFB的中點.請寫出證明過程.

(運用)如圖2,△ABC是邊長為6的等邊三角形,PAC邊上一動點,由AC運動(與A,C不重合),QCB延長線上一動點,與點P同時以相同的速度由BCB延長線方向運動(Q不與B重合),過PPEABE,連接PQABD

1)當(dāng)∠BQD30°時,求AP的長;

2)在運動過程中線段ED的長是否發(fā)生變化?如果不變,直接寫出線段ED的長;如果發(fā)生改變,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班參加一次智力競賽,共a、b、c三題,每題或者得滿分或者得0分,其中題a滿分20分,題b、題c滿分均為25分.競賽結(jié)果,每個學(xué)生至少答對了一題,三題全答對的有1人,答對其中兩道題的有15人,答對題a的人數(shù)與答對題b的人數(shù)之和為29,答對題a的人數(shù)與答對題c的人數(shù)之和為25,答對題b的人數(shù)與答對題c的人數(shù)之和為20,在這個班的平均成績是__分.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC,△DEC均為直角三角形,B,C,E三點在一條直線上,過DDM⊥ACM.

(1)如圖1,若△ABC≌△DEC,且AB=2BC.

BBN⊥ACN,則線段AN,BN,MN之間的數(shù)量關(guān)系為:   ;(直接寫出答案)

連接ME,求的值;

(2)如圖2,若AB=CE=DE,DM=2,MC=1,求ME的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在長方形中,,有一只螞蟻在點 處開始以每秒1個單位的速度沿邊向點爬行,另一只螞蟻從點以每秒2個單位的速度沿邊向點爬行,螞蟻的大小忽略不計,如果、同時出發(fā),設(shè)運動時間為s.

(1)當(dāng)時,求的面積;

(2)當(dāng) 時,試說明是直角二角形;

(3)當(dāng)運動3s時,點停止運動,點以原速立即向點返回,在返回的過程中,是否存在點,使得平分?若存在,求出點運動的時間,若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)的圖象 x軸、y軸分別交于點A,B.

(1)求點A,B的坐標(biāo);

(2)M為ー次函數(shù)y=x+3的圖象上一點, ABM與△ABO的面積相等,求點M的坐標(biāo);

(3)Qy軸上的一點,若三角形ABQ為等腰三角形 ,請直接寫出點Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個不透明的袋子中裝有大小、質(zhì)地完全相同的3只球,球上分別標(biāo)有2,3,5三個數(shù)字.

(1)從這個袋子中任意摸一只球,所標(biāo)數(shù)字是奇數(shù)的概率是   ;

(2)從這個袋子中任意摸一只球,記下所標(biāo)數(shù)字,不放回,再從這個袋子中任意摸只球,組成一個兩位數(shù),求所組成的兩位數(shù)是5的倍數(shù)的概率.

查看答案和解析>>

同步練習(xí)冊答案