【題目】李老師在與同學(xué)進(jìn)行“螞蟻怎樣爬最近”的課題研究時(shí)設(shè)計(jì)了以下三個(gè)問(wèn)題,請(qǐng)你根據(jù)下列所給的重要條件分別求出螞蟻需要爬行的最短路程的長(zhǎng).
(1) 如圖1,正方體的棱長(zhǎng)為5cm一只螞蟻欲從正方體底面上的點(diǎn)A沿著正方體表面爬到點(diǎn)C1處;
(2) 如圖2,有一圓柱形食品盒,它的高等于16cm,底面直徑為20cm.如果在盒外底面的邊緣A處有一只螞蟻,它想吃到盒外對(duì)面中點(diǎn)B處的食物;(盒的厚度和螞蟻的大小忽略不計(jì),結(jié)果可含π)
(3) 如圖3, 有一無(wú)蓋的圓柱形食品盒,它的高等于16cm,底面直徑為20cm.如果在盒外底面的邊緣A處有一只螞蟻,它想吃到盒內(nèi)對(duì)面中點(diǎn)B處的食物.(盒的厚度和螞蟻的大小忽略不計(jì),結(jié)果可含π)
【答案】(1)cm;(2);(3).
【解析】
(1)將長(zhǎng)方體側(cè)面展開(kāi),直接利用勾股定理得出AC1的長(zhǎng),進(jìn)而得出答案;
(2)將圓柱側(cè)面展開(kāi),首先求出AC的長(zhǎng),再利用勾股定理求出AB的長(zhǎng);
(3)將圓柱側(cè)面展開(kāi),再將內(nèi)部展開(kāi),首先求出AC的長(zhǎng),再利用勾股定理求出AB′的長(zhǎng).
(1)如圖,將長(zhǎng)方體側(cè)面展開(kāi),
易得AC=5×2=10 cm.CC1=5cm.
在Rt△ACC1中,由勾股定理,得
答:螞蟻需要爬行的最短路程的長(zhǎng)為cm.
(2)如圖,將圓柱體側(cè)面展開(kāi),
AC=2πR=2π×10÷2=10π cm,
BC=16÷2=8cm.
故
=
=
答:螞蟻需要爬行的最短路程的長(zhǎng);
(3)如圖,將圓柱體側(cè)面展開(kāi),再將內(nèi)部展開(kāi)
AC=2πR=2π×10÷2=10π cm,
BC=16÷2+16=24cm.
在Rt△AB′C中,由勾股定理,得
故螞蟻需要爬行的最短路程的長(zhǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在△ABC中,已知點(diǎn)D,E,F分別是BC,AD,CE的中點(diǎn),且S△ABC=4,則S△BEF的等于( )
A. B. 1C. 2D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC 中,AB=15,AC=13,高 AD=12,則△ABC 的周長(zhǎng)是( )
A. 42B. 32C. 42 或 32D. 42 或 37
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,甲、乙、丙、丁四位同學(xué)給出了四種表示該長(zhǎng)方形面積的多項(xiàng)式:
①(2a+b)(m+n);②2a(m+n)+b(m+n);③m(2a+b)+n(2a+b);④2am+2an+bm+bn,你認(rèn)為其中正確的有( )
A. ①② B. ③④ C. ①②③ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校要在一塊三角形空地上種植花草,如圖所示,AC=13 米、AB=14 米、BC=15 米, 若線段 CD 是一條引水渠,且點(diǎn) D 在邊 AB 上.已知水渠的造價(jià)每米 150 元.問(wèn):點(diǎn) D 與點(diǎn) C 距離多遠(yuǎn)時(shí),水渠的造價(jià)最低?最低造價(jià)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知如圖,AD∥BC,AB⊥BC,CD⊥DE,CD=ED,AD=2,BC=3,則△ADE的面積為( )
A.1 B.2 C.5 D.無(wú)法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知反比例函數(shù)y=(k為常數(shù)).
(1)若點(diǎn)P1(,y1)和點(diǎn)P2(﹣,y2)是該反比例函數(shù)圖象上的兩點(diǎn),試?yán)梅幢壤瘮?shù)的性質(zhì)比較y1和y2的大;
(2)設(shè)點(diǎn)P(m,n)(m>0)是其圖象上的一點(diǎn),過(guò)點(diǎn)P作PM⊥x軸于點(diǎn)M.若tan∠POM=2,PO=(O為坐標(biāo)原點(diǎn)),求k的值,并直接寫出不等式kx+>0的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)O為直線AB上的一點(diǎn),∠BOC=∠DOE=90°
(1)如圖1,當(dāng)射線OC、射線OD在直線AB的兩側(cè)時(shí),請(qǐng)回答結(jié)論并說(shuō)明理由;
①∠COD和∠BOE相等嗎?
②∠BOD和∠COE有什么關(guān)系?
(2)如圖2,當(dāng)射線OC、射線OD在直線AB的同側(cè)時(shí),請(qǐng)直接回答;
①∠COD和∠BOE相等嗎?
②第(1)題中的∠BOD和∠COE的關(guān)系還成立嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某縣教育局為了豐富初中學(xué)生的大課間活動(dòng),要求各學(xué)校開(kāi)展形式多樣的陽(yáng)光體育活動(dòng).某中學(xué)就“學(xué)生體育活動(dòng)興趣愛(ài)好”的問(wèn)題,隨機(jī)調(diào)查了本校某班的學(xué)生,并根據(jù)調(diào)查結(jié)果繪制成如下的不完整的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖:
(1)在這次調(diào)查中,喜歡籃球項(xiàng)目的同學(xué)有 人,在扇形統(tǒng)計(jì)圖中,“乒乓球”的百分比為 %,如果學(xué)校有800名學(xué)生,估計(jì)全校學(xué)生中有 人喜歡籃球項(xiàng)目.
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整.
(3)在被調(diào)查的學(xué)生中,喜歡籃球的有2名女同學(xué),其余為男同學(xué).現(xiàn)要從中隨機(jī)抽取2名同學(xué)代表班級(jí)參加;@球隊(duì),請(qǐng)直接寫出所抽取的2名同學(xué)恰好是1名女同學(xué)和1名男同學(xué)的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com