【題目】計算:
(1)(﹣2x3y)2(﹣2xy)+(﹣2x3y)3÷2x2
(2)20202﹣2019×2021
(3)(﹣2a+b+1)(2a+b﹣1)
【答案】(1)-12x7y3(2)1(3)b2-4a2+4a-1
【解析】
(1)先算乘方,再算乘除,最后合并即可;(2)利用平方差公式計算即可;(3)先提取公因式-1,把(﹣2a+b+1)轉化為-(2a-b-1)再利用平方差公式計算即可.
(1)(﹣2x3y)2(﹣2xy)+(﹣2x3y)3÷2x2
=4x6y2(-2xy)-8x9y3÷2x2
=-8x7y3-4x7y3
=-12x7y3.
(2)20202﹣2019×2021
=20202-(2020-1)(2020+1)
=20202-20202+1
=1.
(3)(﹣2a+b+1)(2a+b﹣1)
=-(2a-b-1)(2a+b-1)
=-(2a-1)2+b2
=b2-4a2+4a-1
科目:初中數學 來源: 題型:
【題目】在正整數中,
(1﹣)=(1﹣)(1+)
(1﹣)=(1﹣)(1+)
(1﹣)=(1﹣)(1+)
觀察上面的算式,可以歸納得出: = .
利用上述規(guī)律,計算下列各式:(1﹣)×(1﹣)×(1﹣)= .
(1﹣)×(1﹣)×(1﹣)×…×(1﹣)= (請將結題步驟寫在下方空白處)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,點A、D在y軸正半軸上,點B、C分別在x軸上,CD平分∠ACB,與y軸交于D點,∠CAO=90°-∠BDO.
(1)求證:AC=BC:
(2)如圖2,點C的坐標為(4,0),點E為AC上一點,且∠DEA=∠DBO,求BC+EC的長;
(3)如圖3,過D作DF⊥AC于F點,點H為FC上一動點,點G為OC上一動點,當H在FC上移動、點G在OC上移動時,始終滿足∠GDH=∠GDO+∠FDH,試判斷FH、GH、OG這三者之間的數量關系,寫出你的結論并加以證明.
(圖3)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】問題探究:
(1)如圖①,邊長為4的等邊△OAB位于平面直角坐標系中,將△OAB折疊,使點B落在OA的中點處,則折痕長為;
(2)如圖②,矩形OABC位于平面直角坐標系中,其中OA=8,AB=6,將矩形沿線段MN折疊,點B落在x軸上,其中AN= AB,求折痕MN的長;
(3)如圖③,四邊形OABC位于平面直角坐標系中,其中OA=AB=6,CB=4,BC∥OA,AB⊥OA于點A,點Q(4,3)為四邊形內部一點,將四邊形折疊,使點B落在x軸上,問是否存在過點Q的折痕,若存在,求出折痕長,若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,∠A=30°,BC=1,D為AB中點,E為AC上一動點,BF∥AC交ED延長線于點F,則四邊形BCEF周長的最小值為( )
A. 1+ B. 4 C. 2+ D. 2+
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(8分)如圖,在ABCD中,∠BCD=120°,分別延長DC、BC到點E,F(xiàn),使得△BCE和△CDF都是正三角形.
(1)求證:AE=AF;
(2)求∠EAF的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+c與⊙M相交于A、B、C、D四點,其中A、B兩點的坐標分別為(﹣1,0),(0,﹣2),點D在x軸上且AD為⊙M的直徑.點E是⊙M與y軸的另一個交點,過劣弧 上的點F作FH⊥AD于點H,且FH=1.5
(1)求點D的坐標及該拋物線的表達式;
(2)若點P是x軸上的一個動點,試求出△PEF的周長最小時點P的坐標;
(3)在拋物線的對稱軸上是否存在點Q,使△QCM是等腰三角形?如果存在,請直接寫出點Q的坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某蔬菜經營戶從蔬菜批發(fā)市場批發(fā)蔬菜進行零售,部分蔬菜批發(fā)價格與零售價格如下表:
請解答下列問題:
(1)第一天,該經營戶批發(fā)西紅柿和西蘭花兩種蔬菜共300 kg,用去了1520元錢,這兩種蔬菜當天全部售完后一共能賺多少元錢?
(2)第二天,該經營戶用1520元錢仍然批發(fā)西紅柿和西蘭花,要想當天全部售完后所賺錢數不少于1050元,則該經營戶最多能批發(fā)西紅柿多少千克?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com