【題目】如圖1,直線分別與軸、軸交于、兩點,平分交于點,點為線段上一點,過點作交軸于點,已知,,且滿足.
(1)求兩點的坐標;
(2)若點為中點,延長交軸于點,在的延長線上取點,使,連接.
①與軸的位置關系怎樣?說明理由;
②求的長;
(3)如圖2,若點的坐標為,是軸的正半軸上一動點,是直線上一點,且的坐標為,是否存在點使為等腰直角三角形?若存在,求出點的坐標;若不存在,說明理由.
【答案】(1)點A的坐標為(3,0),點B的坐標為(0,6);(2)①BG⊥y軸,理由見解析;②;(3)存在,點E的坐標為(0,4)
【解析】
(1)根據平方和絕對值的非負性即可求出m和n的值,從而求出點A、B的坐標;
(2)①利用SAS即可證出△BDG≌△ADF,從而得出∠G=∠AFD,根據平行線的判定可得BG∥AF,從而得出∠GBO=90°,即可得出結論;
②過點D作DM⊥x軸于M,根據平面直角坐標系中線段的中點公式即可求出點D的坐標,從而求出OM=,DM=3,根據角平分線的定義可得∠COA=45°,再根據平行線的性質和等腰三角形的判定可得△FMD為等腰三角形,FM=DM=3,從而求出點F的坐標;
(3)過點F作FG⊥y軸于G,過點P作PH⊥y軸于H,利用AAS證出△GFE≌△HEP,從而得出FG=EH,GE=PH,然后根據點F和點P的坐標即可求出OE的長,從而求出點E的坐標.
解:(1)∵,
∴
解得:
∴AO=3,BO=6
∴點A的坐標為(3,0),點B的坐標為(0,6);
(2)①BG⊥y軸,理由如下
∵點為中點
∴BD=AD
在△BDG和△ADF中
∴△BDG≌△ADF
∴∠G=∠AFD
∴BG∥AF
∴∠GBO=180°-∠AOB=90°
∴BG⊥y軸;
②過點D作DM⊥x軸于M
∵點為中點
∴點D的坐標為()=()
∴OM=,DM=3
∵平分
∴∠COA=
∵
∴∠MFD=∠COA=45°
∴△FMD為等腰三角形,FM=DM=3
∴OF=FM-OM=;
(3)存在,
過點F作FG⊥y軸于G,過點P作PH⊥y軸于H
若為等腰直角三角形,必有EF=PE,∠FEP=90°
∴∠GFE+∠GEF=90°,∠HEP+∠GEF=90°
∴∠GFE=∠HEP
在△GFE和△HEP中
∴△GFE≌△HEP
∴FG=EH,GE=PH
∵點的坐標為,點的坐標為
∴OG=10,PH=6
∴GE=6
∴OE=OG-GE=4
∴點E的坐標為(0,4).
科目:初中數(shù)學 來源: 題型:
【題目】《九章算術》是中國古代數(shù)學的重要著作,方程術是它的最高成就,其中記載:今有牛五、羊二,直金十兩;牛二、羊五,直金八兩.問:牛、羊各直金幾何?”譯文:“假設有5頭牛、2只羊,值金10兩;2頭牛、5只羊,值金8兩.問:每頭牛、每只羊各值金多少兩?”設每頭牛值金x兩,每只羊值金y兩,則列方程組錯誤的是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90,過點C的直線MN∥AB,D為AB邊上一點,過點D作DE⊥BC,交直線MN于E,垂足為F,連接CD,BE
(1)求證:CE=AD
(2)當點D在AB中點時,四邊形BECD是什么特殊四邊形?說明理由
(3)若D為AB的中點,則當∠A的大小滿足什么條件時,四邊形BECD是正方形?說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點將線段分成兩部分,如果,那么稱點為線段的黃金分割點,某教學興趣小組在進行研究時,由“黃金分割點”聯(lián)想到“黃金分割線”,類似的給出“黃金分割線”的定義:“一直線將一個面積為的圖形分成兩部分,這兩部分的面積分別為,,如果,那么稱這條直線為該圖形的黃金分割線.
如圖,在中,,,的平分線交于點,請問直線是不是的黃金分割線,并證明你的結論;
如圖,在邊長為的正方形中,點是邊上一點,若直線是正方形的黃金分割線,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某品牌計算機春節(jié)期間搞活動,規(guī)定每臺計算機售價 0.7 萬元,首次付款后每個月應還的錢數(shù) y (元)與還錢月數(shù) t 的關系如圖所示.
(1)根據圖像寫出 y 與 t 的函數(shù)關系式;
(2)求出首次付款的錢數(shù);
(3)如果要求每月支付的錢數(shù)不多于 400 元,那么首付后還至少需幾個月才能將所有的錢全部還清?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙、丙三位運動員在相同條件下各射靶10次,每次射靶的成績如下:
甲:9,10,8,5,7,8,10,8,8,7
乙:5,7,8,7,8,9,7,9,10,10
丙:7,6,8,5,4,7,6,3,9,5
(1)根據以上數(shù)據完成下表:
平均數(shù) | 中位數(shù) | 方差 | |
甲 | 8 | 8 | ________ |
乙 | ________ | 8 | 2.2 |
丙 | 6 | ________ | 3 |
(2)根據表中數(shù)據分析,哪位運動員的成績最穩(wěn)定,并簡要說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中的位置如圖所示.
(1)作出關于軸對稱的,并寫出各頂點的坐標;
(2)將向右平移6個單位,作出平移后的并寫出各頂點的坐標;
(3)觀察和,它們是否關于某直線對稱?若是,請用粗線條畫出對稱軸.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖某農場要建一個長方形的養(yǎng)雞場,雞場的一邊靠墻(墻長18m),另三邊用木欄圍成,木欄長35m.雞場的面積能達到150m2嗎?如果能,請你給出設計方案;如果不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線,直線,與相交于點,,分別與軸相交于點.
(1)求點P的坐標.
(2)若,求x的取值范圍.
(3)點為x軸上的一個動點,過作x軸的垂線分別交和于點,當EF=3時,求m的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com