【題目】甲、乙、丙三位運動員在相同條件下各射靶10次,每次射靶的成績?nèi)缦拢?/span>
甲:9,10,8,5,7,8,10,8,8,7
乙:5,7,8,7,8,9,7,9,10,10
丙:7,6,8,5,4,7,6,3,9,5
(1)根據(jù)以上數(shù)據(jù)完成下表:
平均數(shù) | 中位數(shù) | 方差 | |
甲 | 8 | 8 | ________ |
乙 | ________ | 8 | 2.2 |
丙 | 6 | ________ | 3 |
(2)根據(jù)表中數(shù)據(jù)分析,哪位運動員的成績最穩(wěn)定,并簡要說明理由.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,AB=CB,F(xiàn)為AB延長線上一點,點E在BC上,且AE=CF,若∠CAE=32°,則∠ACF的度數(shù)為__________°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)(x>0)的圖象交于A(2,﹣1),B(,n)兩點,直線y=2與y軸交于點C.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:對于一些次數(shù)較高或者是比較復(fù)雜的式子進(jìn)行因式分解時,換元法是一種常用的方法,下面是某同學(xué)用換元法對多項式進(jìn)行因式分解的過程.
解:設(shè)
原式(第一步)
(第二步)
(第三步)
(第四步)
回答下列問題:
(1)該同學(xué)第二步到第三步運用了因式分解的__________(填代號).
A.提取公因式 B.平方差公式
C.兩數(shù)和的完全平方公式 D.兩數(shù)差的完全平方公式
(2)按照“因式分解,必須進(jìn)行到每一個多項式因式都不能再分解為止”的要求,該多項式分解因式的最后結(jié)果為______________.
(3)請你模仿以上方法對多項式進(jìn)行因式分解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線分別與軸、軸交于、兩點,平分交于點,點為線段上一點,過點作交軸于點,已知,,且滿足.
(1)求兩點的坐標(biāo);
(2)若點為中點,延長交軸于點,在的延長線上取點,使,連接.
①與軸的位置關(guān)系怎樣?說明理由;
②求的長;
(3)如圖2,若點的坐標(biāo)為,是軸的正半軸上一動點,是直線上一點,且的坐標(biāo)為,是否存在點使為等腰直角三角形?若存在,求出點的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一張三角形紙片ABC,∠A=80°,點D是AC邊上一點,沿BD方向剪開三角形紙片后,發(fā)現(xiàn)所得兩張紙片均為等腰三角形,則∠C的度數(shù)可以是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一直角坐標(biāo)系中,函數(shù)y=mx+m和函數(shù)y=mx2+2x+2(m是常數(shù),且m≠0)的圖象可能是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=kx+b(k≠0)與拋物線y=ax2(a≠0)交于A,B兩點,且點A的橫坐標(biāo)是-2,點B的橫坐標(biāo)是3,則以下結(jié)論:
①拋物線y=ax2(a≠0)的圖象的頂點一定是原點;
②x>0時,直線y=kx+b(k≠0)與拋物線y=ax2(a≠0)的函數(shù)值都隨著x的增大而增大;
③AB的長度可以等于5;
④△OAB有可能成為等邊三角形;
⑤當(dāng)-3<x<2時,ax2+kx<b,
其中正確的結(jié)論是( )
A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點D、E、F分別在AB、BC、AC邊上,且BE=CF,BD=CE.
(1)求證:△DEF是等腰三角形;
(2)當(dāng)∠A=36°時,求∠DEF的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com