【題目】對(duì)于二次函數(shù)y=x2﹣3x+2和一次函數(shù)y=﹣2x+4,把y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)稱(chēng)為這兩個(gè)函數(shù)的“再生二次函數(shù)”,其中t是不為零的實(shí)數(shù),其圖象記作拋物線L.現(xiàn)有點(diǎn)A(2,0)和拋物線L上的點(diǎn)B(﹣1,n),請(qǐng)完成下列任務(wù):
(嘗試)
(1)當(dāng)t=2時(shí),拋物線y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)的頂點(diǎn)坐標(biāo)為 ;
(2)判斷點(diǎn)A是否在拋物線L上;
(3)求n的值;
(發(fā)現(xiàn))
通過(guò)(2)和(3)的演算可知,對(duì)于t取任何不為零的實(shí)數(shù),拋物線L總過(guò)定點(diǎn),坐標(biāo)為 .
(應(yīng)用)
二次函數(shù)y=﹣3x2+5x+2是二次函數(shù)y=x2﹣3x+2和一次函數(shù)y=﹣2x+4的一個(gè)“再生二次函數(shù)”嗎?如果是,求出t的值;如果不是,說(shuō)明理由.
【答案】[嘗試](1)(1,﹣2);(2)點(diǎn)A在拋物線L上;(3)n=6;[發(fā)現(xiàn)](2,0),(﹣1,6);[應(yīng)用]不是,理由見(jiàn)解析.
【解析】
[嘗試]
(1)將t的值代入“再生二次函數(shù)”中,通過(guò)配方可得到頂點(diǎn)的坐標(biāo);
(2)將點(diǎn)A的坐標(biāo)代入拋物線L直接進(jìn)行驗(yàn)證即可;
(3)已知點(diǎn)B在拋物線L上,將該點(diǎn)坐標(biāo)代入拋物線L的解析式中直接求解,即可得到n的值.
[發(fā)現(xiàn)]
將拋物線L展開(kāi),然后將含t值的式子整合到一起,令該式子為0(此時(shí)無(wú)論t取何值都不會(huì)對(duì)函數(shù)值產(chǎn)生影響),即可求出這個(gè)定點(diǎn)的坐標(biāo).
[應(yīng)用]
將[發(fā)現(xiàn)]中得到的兩個(gè)定點(diǎn)坐標(biāo)代入二次函數(shù)y=-3x2+5x+2中進(jìn)行驗(yàn)證即可.
解:[嘗試]
(1)∵將t=2代入拋物線L中,得:
y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)=2x2﹣4x=2(x﹣1)2﹣2,
∴此時(shí)拋物線的頂點(diǎn)坐標(biāo)為:(1,﹣2).
(2)∵將x=2代入y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4),得 y=0,
∴點(diǎn)A(2,0)在拋物線L上.
(3)將x=﹣1代入拋物線L的解析式中,得:
n=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)=6.
[發(fā)現(xiàn)]
∵將拋物線L的解析式展開(kāi),得:
y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)=t(x﹣2)(x+1)﹣2x+4
當(dāng)x=2時(shí),y=0,當(dāng)x=-1時(shí),y=6,與t無(wú)關(guān),
∴拋物線L必過(guò)定點(diǎn)(2,0)、(﹣1,6).
[應(yīng)用]
將x=2代入y=﹣3x2+5x+2,y=0,即點(diǎn)A在拋物線上.
將x=﹣1代入y=﹣3x2+5x+2,計(jì)算得:y=﹣6≠6,
即可得拋物線y=﹣3x2+5x+2不經(jīng)過(guò)點(diǎn)B,
∴二次函數(shù)y=﹣3x2+5x+2不是二次函數(shù)y=x2﹣3x+2和一次函數(shù)y=﹣2x+4的一個(gè)“再生二次函數(shù)”.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明利用函數(shù)與不等式的關(guān)系,對(duì)形如 (為正整數(shù))的不等式的解法進(jìn)行了探究.
(1)下面是小明的探究過(guò)程,請(qǐng)補(bǔ)充完整:
①對(duì)于不等式,觀察函數(shù)的圖象可以得到如下表格:
的范圍 | ||
的符號(hào) |
由表格可知不等式的解集為.
②對(duì)于不等式,觀察函數(shù)的圖象可得到如下表格:
的范圍 | |||
的符號(hào) |
由表格可知不等式的解集為 .
③對(duì)于不等式,請(qǐng)根據(jù)已描出的點(diǎn)畫(huà)出函數(shù)的圖象;
觀察函數(shù)的圖象,
補(bǔ)全下面的表格:
的范圍 | ||||
的符號(hào) |
由表格可知不等式的解集為 .
小明將上述探究過(guò)程總結(jié)如下:對(duì)于解形如 (為正整數(shù))的不等式,先將按從大到小的順序排列,再劃分的范圍,然后通過(guò)列表格的辦法,可以發(fā)現(xiàn)表格中的符號(hào)呈現(xiàn)一定的規(guī)律,利用這個(gè)規(guī)律可以求這樣的不等式的解集.
(2)請(qǐng)你參考小明的方法,解決下列問(wèn)題:
①不等式的解集為 .
②不等式的解集為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,AC、DC為弦,∠ACD=60°,P為AB延長(zhǎng)線上的點(diǎn),∠APD=30°.
(1)求證:DP是⊙O的切線;
(2)若⊙O的半徑為3cm,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在△ABC中,∠B=90°,AB=5cm,BC=7cm.點(diǎn)P從點(diǎn)A開(kāi)始沿AB邊向點(diǎn)B以1cm/s的速度移動(dòng),點(diǎn)Q從點(diǎn)B開(kāi)始沿BC邊向點(diǎn)C以2cm/s的速度移動(dòng).
(1)如果P,Q分別從A,B同時(shí)出發(fā),那么幾秒后,△PBQ的面積等于6cm2?
(2)在(1)中,△PQB的面積能否等于8cm2?說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為深化課改,落實(shí)立德樹(shù)人目標(biāo),某學(xué)校設(shè)置了以下四門(mén)拓展性課程:A.?dāng)?shù)學(xué)思維,B.文學(xué)鑒賞,C.紅船課程,D.3D打印,規(guī)定每位學(xué)生選報(bào)一門(mén).為了解學(xué)生的報(bào)名情況,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并制作成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)回答下列問(wèn)題:
(1)求這次被調(diào)查的學(xué)生人數(shù);
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)假如全校有學(xué)生1000人,請(qǐng)估計(jì)選報(bào)“紅船課程”的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知如圖所示,點(diǎn)到、、三點(diǎn)的距離均等于(為常數(shù)),到點(diǎn)的距離等于的所有點(diǎn)組成圖形. 射線與射線關(guān)于對(duì)稱(chēng),過(guò)點(diǎn) C作于.
(1)依題意補(bǔ)全圖形(保留作圖痕跡);
(2)判斷直線與圖形的公共點(diǎn)個(gè)數(shù)并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校與圖書(shū)館在同一條筆直道路上。甲從學(xué)校去圖書(shū)館,乙從圖書(shū)館回學(xué)校,甲、乙兩人都勻速步行且同時(shí)出發(fā),乙先到達(dá)目的地。兩人之間的距離(米)與時(shí)間(分鐘)之間的函數(shù)關(guān)系如圖所示。
(1)當(dāng)____________分鐘時(shí)甲、乙兩人相遇,乙的速度為_(kāi)_________米/分鐘,點(diǎn)的坐標(biāo)為_(kāi)____________;
(2)求出甲、乙兩人相遇后與之間的函數(shù)關(guān)系式;
(3)當(dāng)乙到達(dá)距學(xué)校800米處時(shí),求甲、乙兩人之間的距離。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某小區(qū)門(mén)口的欄桿從水平位置AB繞固定點(diǎn)O旋轉(zhuǎn)到位置DC,已知欄桿AB的長(zhǎng)為3.5米,OA的長(zhǎng)為3米,點(diǎn)C到AB的距離為0.3米,支柱OE的高為0.6米,那么欄桿端點(diǎn)D離地面的距離為____________米
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了配合全市“創(chuàng)建全國(guó)文明城市”活動(dòng),某校共1200名學(xué)生參加了學(xué)校組織的創(chuàng)建全國(guó)文明城市知識(shí)競(jìng)賽,擬評(píng)出四名一等獎(jiǎng).
(1)求每一位同學(xué)獲得一等獎(jiǎng)的概率;
(2)學(xué)校對(duì)本次競(jìng)賽獲獎(jiǎng)情況進(jìn)行了統(tǒng)計(jì),其中七、八年級(jí)分別有一名同學(xué)獲得一等獎(jiǎng),九年級(jí)有2名同學(xué)獲得一等獎(jiǎng),現(xiàn)從獲得一等獎(jiǎng)的同學(xué)中任選兩人參加全市決賽,請(qǐng)通過(guò)列表或畫(huà)樹(shù)狀圖的方法,求所選出的兩人中既有七年級(jí)又有九年級(jí)同學(xué)的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com