如圖,AD是△ABC的高,AE是△ABC的外接圓直徑.求證:∠BAE=∠CAD.

【答案】分析:因?yàn)锳E是△ABC的外接圓直徑,所以∠ABE=90°,根據(jù)∠BAE+∠E=90°,∠ADC=90°,可知∠E=∠ACB,所以∠BAE=∠CAD.
解答:證明:∵AE是△ABC的外接圓直徑,
∴∠ABE=90°.
∴∠BAE+∠E=90°.
∵AD是△ABC的高,
∴∠ADC=90°.
∴∠CAD+∠ACB=90°.
∵∠E=∠ACB,
∴∠BAE=∠CAD.
點(diǎn)評:主要考查了圓中的有關(guān)性質(zhì).根據(jù)圓周角定理可得到相等的角,根據(jù)等量代換可求得∠E=∠ACB是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,AD是△ABC的高線,且AD=2,若將△ABC及其高線平移到△A′B′C′的位置,則A′D′和B′D′位置關(guān)系是
垂直
,A′D′=
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,AD是△ABC是角平分線,DE⊥AB于點(diǎn)E,DF⊥AC于點(diǎn)F,連接EF交AD于點(diǎn)G,則AD與EF的位置關(guān)系是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

16、已知:如圖,AD是△ABC的角平分線,且 AB:AC=3:2,則△ABD與△ACD的面積之比為
3:2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,AD是△ABC的邊BC上的中線,已知AB=5cm,AC=3cm.
(1)求△ABD與△ACD的周長之差.
(2)若AB邊上的高為2cm,求AC邊上的高.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AD是△ABC的中線,CE是△ACD的中線,DF是△CDE的中線,如果△DEF的面積是2,那么△ABC的面積為(  )

查看答案和解析>>

同步練習(xí)冊答案