【題目】如圖1,在矩形ABCD中,AB=5,BC=4,E是BC邊上一點(diǎn),連接DE,將矩形ABCD沿DE折疊,頂點(diǎn)C恰好落在AB邊上點(diǎn)F處,延長(zhǎng)DE交AB的延長(zhǎng)線于點(diǎn)G.
(1)求線段BE的長(zhǎng);
(2)連接CG,求證:四邊形CDFG是菱形;
(3)如圖2,P,Q分別是線段DG,CG上的動(dòng)點(diǎn)(與端點(diǎn)不重合),且∠CPQ=∠CDP,是否存在這樣的點(diǎn)P,使△CPQ是等腰三角形?若存在,請(qǐng)直接寫出DP的值,若不存在,請(qǐng)說明理由.
【答案】(1);(2)見解析;(3)存在,或
【解析】
(1)設(shè),由矩形的性質(zhì),折疊的性質(zhì)和勾股定理得出BF,EF的值,然后在中利用勾股定理即可求解;
(2)由矩形的性質(zhì)得出,然后根據(jù)平行線分線段成比例可求出BG的長(zhǎng)度,進(jìn)而可求出FG的長(zhǎng)度,則可證明結(jié)論;
(3)分兩種情況:和,分別利用等腰三角形的性質(zhì)和相似三角形的判定及性質(zhì)得出PG的長(zhǎng)度,然后利用勾股定理求出DG的長(zhǎng)度,最后利用即可求解.
(1)∵四邊形ABCD是矩形,
∴ .
由折疊的性質(zhì)可知, ,
,
,
.
設(shè),則 ,
,
,
解得 ,
;
(2)證明:,
.
,
,
,
,
,
.
,
∴四邊形CDFG是平行四邊形.
∵,
∴四邊形CDFG是菱形;
(3)存在,理由如下:
①若,
∵四邊形CDFG是菱形,
∴ ,
.
,
.
,
,
.
,
.
,
,
;
②若,
過點(diǎn)P作交CG于點(diǎn)H,
,
.
,
,
.
,
.
∵四邊形CDFG是菱形,
∴ .
,
,
,
,
,
,
綜上所述,DP的值為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在平面直角坐標(biāo)系中,對(duì)于任意的實(shí)數(shù),直線都經(jīng)過平面內(nèi)一個(gè)定點(diǎn).
(1)求點(diǎn)的坐標(biāo).
(2)反比例函數(shù)的圖象與直線交于點(diǎn)和另外一點(diǎn)
①求的值;
②當(dāng)時(shí),求的取值范圍
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,∠QAN為銳角,H、B分別為射線AN上的點(diǎn),點(diǎn)H關(guān)于射線AQ的對(duì)稱點(diǎn)為C,連接AC,CB.
(1)依題意補(bǔ)全圖;
(2)CB的垂直平分線交AQ于點(diǎn)E,交BC于點(diǎn)F.連接CE,HE,EB.
①求證:△EHB是等腰三角形;
②若AC+AB=AE,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,∠ABC=60°,∠BAD的平分線交CD于點(diǎn)E,交BC的延長(zhǎng)線于點(diǎn)F,連接DF.
(1)求證:△ABF是等邊三角形;
(2)若∠CDF=45°,CF=2,求AB的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A,B是⊙C上的兩個(gè)點(diǎn),點(diǎn)P在⊙C的內(nèi)部.若∠APB為直角,則稱∠APB為AB關(guān)于⊙C的內(nèi)直角,特別地,當(dāng)圓心C在∠APB邊(含頂點(diǎn))上時(shí),稱∠APB為AB關(guān)于⊙C的最佳內(nèi)直角.如圖1,∠AMB是AB關(guān)于⊙C的內(nèi)直角,∠ANB是AB關(guān)于⊙C的最佳內(nèi)直角.在平面直角坐標(biāo)系xOy中.
(1)如圖2,⊙O的半徑為5,A(0,﹣5),B(4,3)是⊙O上兩點(diǎn).
①已知P1(1,0),P2(0,3),P3(﹣2,1),在∠AP1B,∠AP2B,∠AP3B,中,是AB關(guān)于⊙O的內(nèi)直角的是 ;
②若在直線y=2x+b上存在一點(diǎn)P,使得∠APB是AB關(guān)于⊙O的內(nèi)直角,求b的取值范圍.
(2)點(diǎn)E是以T(t,0)為圓心,4為半徑的圓上一個(gè)動(dòng)點(diǎn),⊙T與x軸交于點(diǎn)D(點(diǎn)D在點(diǎn)T的右邊).現(xiàn)有點(diǎn)M(1,0),N(0,n),對(duì)于線段MN上每一點(diǎn)H,都存在點(diǎn)T,使∠DHE是DE關(guān)于⊙T的最佳內(nèi)直角,請(qǐng)直接寫出n的最大值,以及n取得最大值時(shí)t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次綜合社會(huì)實(shí)踐活動(dòng)中,小東同學(xué)從A處出發(fā),要到A地北偏東60°方向的C處,他先沿正東方向走了4千米到達(dá)B處,再沿北偏東15°方向走,恰能到達(dá)目的地C,如圖所示,則A、C兩地相距__千米.(結(jié)果精確到0.1千米,參考數(shù)據(jù):≈1.414,≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,平面內(nèi)有一點(diǎn)到的三個(gè)頂點(diǎn)的距離分別為若有,則稱點(diǎn)為關(guān)于點(diǎn)的勾股點(diǎn).
如圖2,在的方格紙中,每個(gè)小正方形的邊長(zhǎng)均為的頂點(diǎn)在格點(diǎn)上,請(qǐng)找出所有的格點(diǎn),使點(diǎn)為關(guān)于點(diǎn)的勾股點(diǎn);
如圖3, 為等腰直角三角形,是斜邊延長(zhǎng)線上一點(diǎn),連接,以為直角邊作等腰直角三角形 (點(diǎn)順時(shí)針排列),,連接 求證:點(diǎn)為關(guān)于點(diǎn)的勾股點(diǎn);
如圖4,點(diǎn)是矩形外一點(diǎn),且點(diǎn)是關(guān)于點(diǎn)的勾股點(diǎn),若,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了推動(dòng)全社會(huì)自覺尊法學(xué)法守法用法,促進(jìn)全面依法治國(guó),某區(qū)每年都舉辦普法知識(shí)競(jìng)賽,該區(qū)某單位甲、乙兩個(gè)部門各有員工200人,要在這兩個(gè)部門中挑選一個(gè)部門代表單位參加今年的競(jìng)賽,為了解這兩個(gè)部門員工對(duì)法律知識(shí)的掌握情況,進(jìn)行了抽樣調(diào)查,從甲、乙兩個(gè)部門各隨機(jī)抽取20名員工,進(jìn)行了法律知識(shí)測(cè)試,獲得了他們的成績(jī)(百分制),并對(duì)數(shù)據(jù)(成績(jī))進(jìn)行整理,描述和分析,下面給出了部分信息.
a.甲部門成績(jī)的頻數(shù)分布直方圖如下(數(shù)據(jù)分成6組:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100)
b.乙部門成績(jī)?nèi)缦拢?/span>
40 52 70 70 71 73 77 78 80 81
82 82 82 82 83 83 83 86 91 94
c.甲、乙兩部門成績(jī)的平均數(shù)、方差、中位數(shù)如下:
平均數(shù) | 方差 | 中位數(shù) | |
甲 | 79.6 | 36.84 | 78.5 |
乙 | 77 | 147.2 | m |
d.近五年該單位參賽員工進(jìn)入復(fù)賽的出線成績(jī)?nèi)缦拢?/span>
2014年 | 2015年 | 2016年 | 2017年 | 2018年 | |
出線成績(jī)(百分制) | 79 | 81 | 80 | 81 | 82 |
根據(jù)以上信息,回答下列問題:
(1)寫出表中m的值;
(2)可以推斷出選擇 部門參賽更好,理由為 ;
(3)預(yù)估(2)中部門今年參賽進(jìn)入復(fù)賽的人數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】生活垃圾分類回收是實(shí)現(xiàn)垃圾減量化和資源化的重要途徑和手段.為了解2019年某市第二季度日均可回收物回收量情況,隨機(jī)抽取該市2019年第二季度的天數(shù)據(jù),整理后繪制成統(tǒng)計(jì)表進(jìn)行分析.
日均可回收物回收量(千噸) | 合計(jì) | |||||
頻數(shù) | 1 | 2 | 3 | |||
頻率 | 0.05 | 0.10 | 0.15 | 1 |
表中組的頻率滿足.
下面有四個(gè)推斷:
①表中的值為20;
②表中的值可以為7;
③這天的日均可回收物回收量的中位數(shù)在組;
④這天的日均可回收物回收量的平均數(shù)不低于3.
所有合理推斷的序號(hào)是( )
A.①②B.①③C.②③④D.①③④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com