如圖,Rt△ABC中,∠ACB=90°,AC=BC=2,在以AB的中點O為坐標原點,AB所在直線為x軸建立的平面直角坐標系中,將△ABC繞點B順時針旋轉(zhuǎn),使點A旋轉(zhuǎn)至y軸正半軸上的A′處,則圖中陰影部分面積為( 。
A.π﹣2 B.π C.π D.π﹣2
C【分析】根據(jù)等腰直角三角形的性質(zhì)求出AB,再根據(jù)旋轉(zhuǎn)的性質(zhì)可得A′B=AB,然后求出∠OA′B=30°,再根據(jù)直角三角形兩銳角互余求出∠A′BA=60°,即旋轉(zhuǎn)角為60°,再根據(jù)S陰影=S扇形ABA′+S△A′BC′﹣S△ABC﹣S扇形CBC′=S扇形ABA′﹣S扇形CBC′,然后利用扇形的面積公式列式計算即可得解.
【解答】解:∵∠ACB=90°,AC=BC,
∴△ABC是等腰直角三角形,
∴AB=2OA=2OB=AC=2,
∵△ABC繞點B順時針旋轉(zhuǎn)點A在A′處,
∴BA′=AB,
∴BA′=2OB,
∴∠OA′B=30°,
∴∠A′BA=60°,
即旋轉(zhuǎn)角為60°,
S陰影=S扇形ABA′+S△A′BC′﹣S△ABC﹣S扇形CBC′,
=S扇形ABA′﹣S扇形CBC′,
=﹣,
=π﹣π,
=π.
故選C.
【點評】本題考查了旋轉(zhuǎn)的性質(zhì),等腰直角三角形的性質(zhì),直角三角形30°角所對的直角邊等于斜邊的一半的性質(zhì),表示出陰影部分的面積等于兩個扇形的面積的差是解題的關(guān)鍵,難點在于求出旋轉(zhuǎn)角的度數(shù).
科目:初中數(shù)學 來源: 題型:
某廣場有一噴水池,水從地面噴出,如圖,以水平地面為x軸,出水點為原點,建立平面直角坐標系,水在空中劃出的曲線是拋物線y=﹣x2+4x(單位:米)的一部分,則水噴出的最大高度是( )
A.4米 B.3米 C.2米 D.1米
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,拋物線y=﹣x2+bx+c與x軸交于A、B兩點,與y軸交于點C,點O為坐標原點,點D為拋物線的頂點,點E在拋物線上,點F在x軸上,四邊形OCEF為矩形,且OF=2,EF=3,
(1)求拋物線所對應(yīng)的函數(shù)解析式;
(2)求△ABD的面積;
(3)將△AOC繞點C逆時針旋轉(zhuǎn)90°,點A對應(yīng)點為點G,問點G是否在該拋物線上?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,平面上直線a,b分別過線段OK兩端點(數(shù)據(jù)如圖),則a,b相交所成的銳角是( )
A.20° B.30° C.70° D.80°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
有這樣一組數(shù)據(jù)a1,a2,a3,…an,滿足以下規(guī)律:a1=、a2=、a3=、…、an=(n≥2,且n為正整數(shù)),則a2015的值為 (結(jié)果用數(shù)字表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
小林在某商店購買商品A、B共三次,只有一次購買時,商品A、B同時打折,其余兩次均按標價購買,三次購買商品A、B的數(shù)量和費用如下表:
| 購買商品A的數(shù)量(個) | 購買商品B的數(shù)量(個) | 購買總費用(元) |
第一次購物 | 6 | 5 | 1140 |
第二次購物 | 3 | 7 | 1110 |
第三次購物 | 9 | 8 | 1062 |
(1)小林以折扣價購買商品A、B是第 次購物;
(2)求出商品A、B的標價;
(3)若商品A、B的折扣相同,問商店是打幾折出售這兩種商品的?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com