如圖,點(diǎn)B、C、E在同一條直線上,△ABC與△CDE都是等邊三角形,則下列結(jié)論不一定成立的是( )

A.△ACE≌△BCD
B.△BGC≌△AFC
C.△DCG≌△ECF
D.△ADB≌△CEA
【答案】分析:首先根據(jù)角間的位置及大小關(guān)系證明∠BCD=∠ACE,再根據(jù)邊角邊定理,證明△BCE≌△ACD;由△BCE≌△ACD可得到∠DBC=∠CAE,再加上條件AC=BC,∠ACB=∠ACD=60°,可證出△BGC≌△AFC,再根據(jù)△BCD≌△ACE,可得∠CDB=∠CEA,再加上條件CE=CD,∠ACD=∠DCE=60°,又可證出△DCG≌△ECF,利用排除法可得到答案.
解答:解:∵△ABC和△CDE都是等邊三角形,
∴BC=AC,CE=CD,∠BCA=∠ECD=60°,
∴∠BCA+∠ACD=∠ECD+∠ACD,
即∠BCD=∠ACE,
∴在△BCD和△ACE中 ,
∴△BCD≌△ACE(SAS),
故A成立,
∴∠DBC=∠CAE,
∵∠BCA=∠ECD=60°,
∴∠ACD=60°,
在△BGC和△AFC中,
∴△BGC≌△AFC,
故B成立,
∵△BCD≌△ACE,
∴∠CDB=∠CEA,
在△DCG和△ECF中,
∴△DCG≌△ECF,
故C成立,
故選:D.
點(diǎn)評:此題主要考查了三角形全等的判定以及等邊三角形的性質(zhì),解決問題的關(guān)鍵是根據(jù)已知條件找到可證三角形全等的條件.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,點(diǎn)A,O,B在同一直線上,射線OD平分∠AOC,射線OE平分∠BOC.
(1)若∠COE=60°,求∠COD及∠BOD的度數(shù);
(2)你能發(fā)現(xiàn)射線OD,OE有什么位置關(guān)系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點(diǎn)A、B、C在⊙O上,AO∥BC,∠OBC=40°,則∠ACB的度數(shù)是
20°
20°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•北京)已知:如圖,點(diǎn)E,A,C在同一直線上,AB∥CD,AB=CE,AC=CD.
求證:BC=ED.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•鞍山)如圖,點(diǎn)G、E、F分別在平行四邊形ABCD的邊AD、DC和BC上,DG=DC,CE=CF,點(diǎn)P是射線GC上一點(diǎn),連接FP,EP.
求證:FP=EP.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•南通二模)如圖,點(diǎn)A是雙曲線y=
4
x
在第一象限上的一動點(diǎn),連接AO并延長交另一分支于點(diǎn)B,以AB為斜邊作等腰Rt△ABC,點(diǎn)C在第二象限,隨著點(diǎn)A的運(yùn)動,點(diǎn)C的位置也不斷的變化,但始終在一函數(shù)圖象上運(yùn)動,則這個函數(shù)的解析式為
y=-
4
x
y=-
4
x

查看答案和解析>>

同步練習(xí)冊答案