【題目】如圖,一次函數y=ax+b的圖象與反比例函數y=的圖象交于A,B兩點,與x軸交于點C,與y軸交于點D,已知OA=,tan∠AOC=,點B的坐標為(m,﹣2).
(1)求反比例函數的解析式;
(2)求一次函數的解析式.
【答案】(1)反比例函數的解析式是y=;(2)一次函數的解析式是y=x﹣1.
【解析】分析:(1)過A作AE⊥X軸于E,由tan∠AOE=,得到OE=3AE,根據勾股定理即可求出AE和OE的長,即得到A的坐標,代入雙曲線即可求出k的值,得到解析式;
(2)把B的坐標代入反比例函數的解析式即可求出B的坐標,把A和B的坐標代入一次函數的解析式即可求出a、b的值,即得到答案.
詳解:(1)過A作AE⊥X軸于E,
tan∠AOE=,
∴OE=3AE,
∵OA=,由勾股定理得:OE2+AE2=10,
解得:AE=1,OE=3,
∴A的坐標為(3,1),
A點在雙曲線上,
∴1=,
∴k=3,
∴雙曲線的解析式y=.
答:反比例函數的解析式是y=.
(2)解:B(m,﹣2)在雙曲y=上,
∴﹣2=,
解得:m=﹣,
∴B的坐標是(﹣,﹣2),
代入一次函數的解析式得:,
解得:,
∴一次函數的解析式為:y=x﹣1.
答:一次函數的解析式是y=x﹣1.
科目:初中數學 來源: 題型:
【題目】小明最喜歡吃芝麻餡的湯圓了,一天早晨小明媽媽給小明下了四個大湯圓,一個花生餡,一個水果餡,兩個芝麻餡,四個湯圓除內部餡料不同外,其他一切均相同.
(1)求小明吃第一個湯圓恰好是芝麻餡的概率;
(2)請利用樹狀圖或列表法,求小明吃前兩個湯圓恰好是芝麻餡的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】函數是描述客觀世界運動變化的重要模型,理解函數的本質是重要的任務。
(1)如圖1,在平面直角坐標系中,已知點A、B的坐標分別為A(6,0)、B(0,2),點C(x,y)在線段AB上,計算(x+y)的最大值。小明的想法是:這里有兩個變量x、y,若最大值存在,設最大值為m,則有函數關系式y=-x+m,由一次函數的圖像可知,當該直線與y軸交點最高時,就是m的最大值,(x+y)的最大值為 ;
(2)請你用(1)中小明的想法解決下面問題:
如圖2,以(1)中的AB為斜邊在右上方作Rt△ABM.設點M坐標為(x,y),求(x+y)的最大值是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線l經過⊙O的圓心O,且與⊙O交于A、B兩點,點C在⊙O上,且∠AOC=30°,點P是直線l上的一個動點(與圓心O不重合),直線CP與⊙O相交于另一點Q,如果QP=QO,則∠OCP= .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某電視臺的一檔娛樂性節(jié)目中,在游戲PK環(huán)節(jié),為了隨機分選游戲雙方的組員,主持人設計了以下游戲:用不透明的白布包住三根顏色長短相同的細繩AA1、BB1、CC1,只露出它們的頭和尾(如圖所示),由甲、乙兩位嘉賓分別從白布兩端各選一根細繩,并拉出,若兩人選中同一根細繩,則兩人同隊,否則互為反方隊員.
(1)若甲嘉賓從中任意選擇一根細繩拉出,求他恰好抽出細繩AA1的概率;
(2)請用畫樹狀圖法或列表法,求甲、乙兩位嘉賓能分為同隊的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一艘貨輪位于O地,發(fā)現燈塔A在它的正北方向上,這艘貨輪沿正東方向航行50千米,到達B地,此時用雷達測得燈塔A與貨輪的距離為100千米.
(1)在圖中作出燈塔A的位置,并作射線BA;
(2)以正北,正南方向為基準,借助量角器,描述燈塔A在B地的什么方向上(精確到1°)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平行四邊形ABCD中,∠BAD的平分線交線段BC于點E,交線段DC的延長線于點F,以EC、CF為鄰邊作平行四邊形ECFG.
(1)如圖1,證明平行四邊形ECFG為菱形;
(2)如圖2,若∠ABC=90°,M是EF的中點,求∠BDM的度數;
(3)如圖3,若∠ABC=120°,請直接寫出∠BDG的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知坐標平面內的三個點A(1,3),B(3,1),O(0,0),
(1)請畫出把△ABO向下平移5個單位后得到的△A1B1O1的圖形;
(2)請畫出將△ABO繞點O順時針旋轉90°后得到的△A2B2O2,并寫出點A的對應點A2的坐標。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據平行線與等腰三角形的性質,易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OE∥AB,證得根據相似三角形的對應邊成比例,即可求得的長,然后利用三角函數的知識,求得與的長,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.
(1)求b與a的關系式和拋物線的頂點D坐標(用a的代數式表示);
(2)直線與拋物線的另外一個交點記為N,求△DMN的面積與a的關系式;
(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關于原點對稱,現將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com