【題目】閱讀材料:
關(guān)于三角函數(shù)還有如下的公式:
Sin(αβ)=sinαcosβcosαsinβ
tan(αβ)=
利用這些公式可以將一些不是特殊角的三角函數(shù)轉(zhuǎn)化為特殊角的三角函數(shù)來求值,
例:tan15°=tan(45°-30°)
=
=
=
根據(jù)以上閱讀材料,請(qǐng)選擇適當(dāng)?shù)墓浇獯鹣旅娴膯栴}
(1)計(jì)算sin15°
(2)我縣體育場(chǎng)有一移動(dòng)公司的信號(hào)塔,小明想利用所學(xué)的數(shù)學(xué)知識(shí)來測(cè)量該塔的高度,小華站在離塔底A距離7米的C處,測(cè)得塔頂?shù)难鼋菫?5°,小華的眼睛離地面的距離DC為1.62米,請(qǐng)幫助小華求出該信號(hào)塔的高度。(精確到0.1米,參考數(shù)據(jù):)
【答案】(1);(2)約為27.7米.
【解析】
試題分析:(1)把15°化為45°-30°以后,再利用公式sin(α±β)=sinαcosβ±cosasinβ計(jì)算,即可求出sin15°的值;
(2)先根據(jù)銳角三角函數(shù)的定義求出BE的長(zhǎng),再根據(jù)AB=AE+BE即可得出結(jié)論.
試題解析:(1)sin15°=sin(45°-30°)=sin45°cos30°-cos45°sin30°=;
(2)在Rt△BDE中,∵∠BED=90°,∠BDE=75°,DE=AC=7米,
∴BE=DE×tan∠BDE=DE×tan75°.
∵tan75°=tan(45°+30°)=,
∴BE=7(2+)=14+7,
∴AB=AE+BE=1.62+14+7≈27.7(米).
答:信號(hào)塔的高度約為27.7米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形ABCD,下列說法正確的是( )
A.當(dāng)AD=BC,AB∥DC時(shí),四邊形ABCD是平行四邊形
B.當(dāng)AD=BC,AB=DC時(shí),四邊形ABCD是平行四邊形
C.當(dāng)AC=BD,AC平分BD時(shí),四邊形ABCD是矩形
D.當(dāng)AC=BD,AC⊥BD時(shí),四邊形ABCD是正方形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,真命題是( )
A.對(duì)角線相等的四邊形是矩形
B.對(duì)角線互相垂直的四邊形是菱形
C.對(duì)角線互相平分的四邊形是平行四邊形
D.對(duì)角線互相垂直平分的四邊形是正方形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=-++4的圖象與y軸交于點(diǎn)A,與x軸交于B、C兩點(diǎn),其對(duì)稱軸與x軸交于點(diǎn)D,連接AC.
(1)點(diǎn)A的坐標(biāo)為_______ ,點(diǎn)C的坐標(biāo)為_______ ;
(2)線段AC上是否存在點(diǎn)E,使得△EDC為等腰三角形?若存在,求出所有符合條件的點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說明理由;
(3)點(diǎn)P為x軸上方的拋物線上的一個(gè)動(dòng)點(diǎn),連接PA、PC,若所得△PAC的面積為S,則S取何值時(shí),相應(yīng)的點(diǎn)P有且只有2個(gè)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知O是口ABCD對(duì)角線的交點(diǎn),△ABC的面積是3,則口ABCD的面積是( )
A.3 B.6 C.9 D.12
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com