【題目】2018年高中一年級(jí)學(xué)生開(kāi)始,湖南省全面啟動(dòng)高考綜合改革,學(xué)生學(xué)習(xí)完必修課程后,可以根據(jù)高校相關(guān)專(zhuān)業(yè)的選課要求和自身興趣、志向、優(yōu)勢(shì),從思想政治、歷史、地理、物理、化學(xué)、生物6個(gè)科目中,自主選擇3個(gè)科目參加等級(jí)考試.學(xué)生已選物理,還想從思想政治、歷史、地理3個(gè)文科科目中選1科,再?gòu)幕瘜W(xué)、生物2個(gè)理科科目中選1.若他選思想政治、歷史、地理的可能性相等,選化學(xué)、生物的可能性相等,則選修地理和生物的概率為___________.

【答案】

【解析】列表格得出所有等可能的情況,然后再找出符合題意的情況,根據(jù)概率公式進(jìn)行計(jì)算即可得.

政治

歷史

地理

化學(xué)

化學(xué),政治

化學(xué),歷史

化學(xué),地理

生物

生物,政治

生物,歷史

生物,地理

從表格中可以看出一共有6種等可能的情況,選擇地理和生物的有1種情況,

所以選擇地理和生物的概率是

故答案為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知等腰RtABC,ACB=90°,CA=CB,以BC為邊向外作等邊CBA,連接AD,過(guò)點(diǎn)C作∠ACB的角平分線(xiàn)與AD交于點(diǎn)E,連接BE

1)若AE=2,求CE的長(zhǎng)度;

2)以AB為邊向下作AFBAFB=60°,連接FE,求證:FA+FB= FE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解下列方程.

(1)2(1-x)2-8=0 (2 )2x2x-1=0 (公式法)

(3)x2-3x+1=0(配方法) (4) (x-1)2-5(x-1)+6=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一次函數(shù)y=kx+b的圖象經(jīng)過(guò)點(diǎn)(0,1),且與正比例函數(shù)y=x的圖象相交于點(diǎn)(2,a).

求:(1)a的值;

(2)一次函數(shù)y=kx+b的解析式;

(3)在圖中畫(huà)出這兩個(gè)函數(shù)圖象,并求這兩個(gè)函數(shù)圖象與x軸所圍成的三角形面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)不透明的口袋里裝有分別標(biāo)有漢字書(shū)”、“”、“”、“的四個(gè)小球,除漢字不同之外,小球沒(méi)有任何區(qū)別,每次摸球前先攪拌均勻.

(1)若從中任取一個(gè)球,球上的漢字剛好是書(shū)的概率為__________.

(2)從中任取一球,不放回,再?gòu)闹腥稳∫磺颍?qǐng)用樹(shù)狀圖或列表的方法,求取出的兩個(gè)球上的漢字能組成歷城的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(pán)被平均分成3個(gè)扇形,分別標(biāo)有1、2、3三個(gè)數(shù)字,小王和小李各轉(zhuǎn)動(dòng)一次轉(zhuǎn)盤(pán)為一次游戲,當(dāng)每次轉(zhuǎn)盤(pán)停止后,指針?biāo)干刃蝺?nèi)的數(shù)為各自所得的數(shù),一次游戲結(jié)束得到一組數(shù)(若指針指在分界線(xiàn)時(shí)重轉(zhuǎn)).

(1)請(qǐng)你用樹(shù)狀圖或列表的方法表示出每次游戲可能出現(xiàn)的所有結(jié)果;

(2)求每次游戲結(jié)束得到的一組數(shù)恰好是方程x2﹣3x+2=0的解的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為4,∠DAC的平分線(xiàn)交DC于點(diǎn)E,若點(diǎn)P,Q分別是AD和AE上的動(dòng)點(diǎn),則DQ+PQ的最小值是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)閱讀下列材料:

問(wèn)題:如圖,在正方形和平行四邊形中,點(diǎn),,在同一條直線(xiàn)上,是線(xiàn)段的中點(diǎn),連接,

探究:當(dāng)的夾角為多少度時(shí),平行四邊形是正方形?

小聰同學(xué)的思路是:首先可以說(shuō)明四邊形是矩形;然后延長(zhǎng)于點(diǎn),構(gòu)造全等三角形,經(jīng)過(guò)推理可以探索出問(wèn)題的答案.

請(qǐng)你參考小聰同學(xué)的思路,探究并解決這個(gè)問(wèn)題.

(1)求證:四邊形是矩形;

(2)的夾角為________度時(shí),四邊形是正方形.

理由:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知中,,,點(diǎn)的中點(diǎn).如果點(diǎn)在線(xiàn)段上以的速度由點(diǎn)點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)在線(xiàn)段上由點(diǎn)點(diǎn)運(yùn)動(dòng).

1)若點(diǎn)的運(yùn)動(dòng)速度與點(diǎn)的運(yùn)動(dòng)速度相等,經(jīng)過(guò)1秒后,是否全等,請(qǐng)說(shuō)明理由.

2)若點(diǎn)的運(yùn)動(dòng)速度與點(diǎn)的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)的運(yùn)動(dòng)速度為多少時(shí),能夠使全等?

查看答案和解析>>

同步練習(xí)冊(cè)答案