【題目】如圖,已知∠DAB+∠D=180°,AC平分∠DAB,且∠CAD=25°,∠B=95°
(1)求∠DCA的度數(shù);
(2)求∠DCE的度數(shù).
【答案】(1)25°.(2)95°.
【解析】試題分析:(1)利用角平分線的定義可以求得∠DAB的度數(shù),再依據(jù)∠DAB+∠D=180°求得∠D的度數(shù),在△ACD中利用三角形的內(nèi)角和定理.即可求得∠DCA的度數(shù);
(2)根據(jù)(1)可以證得:AB∥DC,利用平行線的性質(zhì)定理即可求解.
解:(1)∵AC平分∠DAB,
∴∠CAB=∠DAC=25°,
∴∠DAB=50°,
∵∠DAB+∠D=180°,
∴∠D=180°﹣50°=130°,
∵△ACD中,∠D+∠DAC+∠DCA=180°,
∴∠DCA=180°﹣130°﹣25°=25°.
(2)∵∠DAC=25°,∠DCA=25°,
∴∠DAC=∠DCA,
∴AB∥DC,
∴∠DCE=∠B=95°.
科目:初中數(shù)學 來源: 題型:
【題目】在今年“全國助殘日”捐款活動中,某班級第一小組7名同學積極捐出自己的零花錢,奉獻自己的愛心.他們捐款的數(shù)額分別是(單位:元)50,20,50,30,25,50,55,這組數(shù)據(jù)的眾數(shù)和中位數(shù)分別是( ).
A. 50元,30元B. 50元,40元
C. 50元,50元D. 55元,50元
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀理解:已知點P(x0,y0)和直線y=kx+b,則點P到直線y=kx+b的距離,可用公式d=計算.
例如:求點P(﹣1,2)到直線y=3x+7的距離.
解:因為直線y=3x+7,其中k=3,b=7.
所以點P(﹣1,2)到直線y=3x+7的距離為:d====.
根據(jù)以上材料,解答下列問題:
(1)求點P(1,﹣1)到直線y=x﹣1的距離;
(2)已知⊙Q的圓心Q坐標為(0,5),半徑r為2,判斷⊙Q與直線y=x+9的位置關系并說明理由;
(3)已知直線y=﹣2x+4與y=﹣2x﹣6平行,求這兩條直線之間的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在 2008 年的一次抗震救災大型募捐活動中,文藝工作者積極向災區(qū)捐款.其中 10 人 的捐款分別是:5 萬,8 萬,10 萬,10 萬,10 萬,20 萬,20 萬,30 萬,50 萬,100 萬.這組數(shù)據(jù)的眾數(shù)和中位數(shù)分別是( )
A. 10 萬,15 萬B. 10 萬,20 萬C. 20 萬,15 萬D. 20 萬,10 萬
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知△ABC三個頂點的坐標分別是A(2,2),B(4,0),C(4,﹣4)
(1)請畫出△ABC向左平移6個單位長度后得到的△A1B1C1;
(2)以點O為位似中心,將△ABC縮小為原來的,得到△A2B2C2,請在y軸右側(cè)畫出△A2B2C2,并求出∠A2C2B2的正弦值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若一元二次方程(m-2)x2-4mx+2m-6=0有兩個相等的實數(shù)根,則m等于( )
A. -6 B. 1 C. -6或1 D. 6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】兩人各拋一枚硬幣,則下面說法正確的是( )
A. 每次拋出后出現(xiàn)正面或反面是一樣的
B. 拋擲同樣的次數(shù),則出現(xiàn)正、反面的頻數(shù)一樣多
C. 在相同條件下,即使拋擲的次數(shù)很多,出現(xiàn)正、反面的頻數(shù)也不一定相同
D. 當拋擲次數(shù)很多時,出現(xiàn)正、反面的次數(shù)就相同了
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com