【題目】春節(jié)前小明花1200元從市場購進批發(fā)價分別為每箱30元與50元的、兩種水果進行銷售,分別以每箱35元與60元的價格出售,設(shè)購進水果箱,水果.

1)求關(guān)于的函數(shù)表達式;

2)若要求購進水果的數(shù)量不少于水果的數(shù)量,則應(yīng)該如何分配購進、水果的數(shù)量并全部售出才能獲得最大利潤,此時最大利潤是多少?

【答案】1;(2)應(yīng)購進水果15箱、水果15箱能夠獲得最大利潤,最大利潤為225

【解析】

1)根據(jù)A水果總價+B水果總價=1200列出關(guān)于x、y的二元一次方程,對方程進行整理變形即可得出結(jié)論;

2)設(shè)利潤為W元,找出利潤W關(guān)于x的函數(shù)關(guān)系式,由購進A水果的數(shù)量不得少于B水果的數(shù)量找出關(guān)于x的一元一次不等式,解不等式得出x的取值范圍,再利用一次函數(shù)的性質(zhì)即可解決最值問題.

1)∵

關(guān)于的函數(shù)表達式為:.

2)設(shè)獲得的利潤為元,根據(jù)題意得,

水果的數(shù)量不得少于水果的數(shù)量,

,解得.

,∴的增大而減小,

∴當(dāng)時,最大,此時.

即應(yīng)購進水果15箱、水果15箱能夠獲得最大利潤,最大利潤為225.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市自來水公司為限制單位用水,每月只給某單位計劃內(nèi)用水 3000 噸,計劃內(nèi)用水每噸收費 0.5元,超計劃部分每噸按 0.8 元收費.

1)寫出該單位水費 y(元)與每月用水量 x(噸)之間的函數(shù)關(guān)系式:(寫出自變量取值范圍)

用水量小于等于 3000

用水量大于 3000

2)某月該單位用水 3200 噸,水費是 元;若用水 2800 噸,水費 元.

3)若某月該單位繳納水費 1580 元,則該單位用水多少噸?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知 DE BCAE50cm, EC30cmBC70cm, BAC45°, ACB40°.

求(1 AED和∠ ADE的度數(shù);(2DE的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】淮河汛期即將來臨,防汛指揮部在一危險地帶兩岸各安置了-探照燈,便于夜間查看河面及兩岸河堤的情況.如圖,射線自順時針旋轉(zhuǎn)至便立即回轉(zhuǎn),射線自順時針旋轉(zhuǎn)至便立即回轉(zhuǎn),兩燈不停交叉照射巡視.若燈轉(zhuǎn)動的速度是/,轉(zhuǎn)動的速度是/,滿足:的整數(shù)部分,是不等式的最小整數(shù)解.假定這- -帶淮河兩岸河堤是平行的,, .

1)如圖1_____, ;

2)若燈射線先轉(zhuǎn)動,射線才開始轉(zhuǎn)動,在燈射線到達之前,燈轉(zhuǎn)動幾秒,兩燈的光東互相平行?

3)如圖2,兩燈同時轉(zhuǎn)動,在燈A射線到達AN之前。若射出的光束交于點C,過CCDACPQ于點D,則在轉(zhuǎn)動過程中,∠BAC與∠BCD的數(shù)量關(guān)系是否發(fā)生變化?若不變,請求出其數(shù)量關(guān)系;若改變,請求出其取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在4×4的正方格中,△ABC和△DEF的頂點都在邊長為1的小正方形的頂點上.

(1)填空:∠ABC , BC= ;

(2)判斷△ABC與△DEF是否相似,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,D為等邊ABCBC上一點,DEABE,若BDCD=21,DE=2, AE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在平行四邊形ABCD,ABC=60°,AB=4,四條內(nèi)角平分線圍成四邊形EFGH面積為,則平行四邊形ABCD面積為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場以每件30元的價格購進一種商品,試銷中發(fā)現(xiàn),這種商品每天的銷售量m()與每件的銷售價x()滿足一次函數(shù)m1623x

(1)寫出商場賣這種商品每天的銷售利潤y()與每件的銷售價x()間的函數(shù)關(guān)系式;

(2)如果商場要想每天獲得最大的銷售利潤,每件商品的售價定為多少最為合適?最大銷售利潤為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某廣告公司設(shè)計一幅周長為16米的矩形廣告牌,廣告設(shè)計費為每平方米2000元.設(shè)矩形一邊長為x,面積為S平方米.

(1)求S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

(2)設(shè)計費能達到24000元嗎?為什么?

(3)當(dāng)x是多少米時,設(shè)計費最多?最多是多少元?

查看答案和解析>>

同步練習(xí)冊答案