【答案】125°;(240°,25°;(3)∠AOM=90°﹣(α+β).

【解析】

1)根據(jù)MOCMONBOC代入數(shù)據(jù)計算即可得解;

2)根據(jù)角平分線的定義可得MOB2∠BOC,再根據(jù)旋轉(zhuǎn)角BONMOBMON計算即可得解,然后根據(jù)CONBOCBON計算;

3)先求出BON,再根據(jù)AOMAOBMONBON代入數(shù)據(jù)計算即可得解.

解:(1MOCMONBOC

90°65°,

25°

2OCMOB的角平分線,

∴∠MOB2∠BOC2×65°130°,

旋轉(zhuǎn)角BONMOBMON,

130°90°,

40°,

CONBOCBON

65°40°,

25°;

3∵∠BOCα,NOCβ,

∴∠BONNOC+∠BOCα+β,

O為直線AB上一點,

∴∠AOB180°,

∵∠MON90°

∴∠AOMAOBMONBON,

180°90°﹣(α+β),

90°﹣(α+β).

故答案為:(125°;(240°,25°;(3AOM=90°﹣(α+β).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB4,動點PA出發(fā),在直線AB上以每秒3個單位的速度向右運動,到達B后立即返回,回到A后停止運動,動點QP同時從A出發(fā),在直線AB上以每秒1個單位的速度向左運動,當(dāng)P停止運動時,點Q也停止運動,設(shè)點P的運動時間為t秒.

1)若t1,則BP的長是   PQ的長是   

2)當(dāng)點P回到點A時,求BQ的長.

3)在直線AB上取點C,使B是線段PC的中點,在點P的整個運動過程中,是否存在ACAQ+3,若存在,求出此時t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象與x軸交于點A,與反比例函數(shù)y=(x>0)的圖象交于點B(2,n),過點B作BC⊥x軸于點C,點P(3n﹣4,1)是該反比例函數(shù)圖象上的一點,且∠PBC=∠ABC,求反比例函數(shù)和一次函數(shù)的表達式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】瀏陽河風(fēng)光帶位于湖南省長沙市芙蓉區(qū)瀏陽河西岸,是人們休閑的好去處.如圖,是一幅簡易的風(fēng)光帶地圖,點為一游客休息處.我們可把風(fēng)光帶看作一條彎曲的數(shù)軸,點作為原點,點、是風(fēng)光帶上順次三點,從點往點的方向記作正方向,點之間的路程記為,點、之間的路程記為,開始時點表示的數(shù)為,點表示的數(shù)為(單位:米).

(1),求的值;

(2)(1)的條件下,有甲、乙、丙游客三位分別從點、、的初始位置同時出發(fā)開始沿風(fēng)光帶運動,其中甲以每分鐘米的速度向負方向運動,乙、丙分別以每分鐘米和米的速度沿風(fēng)光帶向正方向運動.求運動多少分鐘后,乙、丙之間的路程與甲、乙之間的路程相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:如果(,為正數(shù)),那么我們把叫做數(shù),記作.

(1)根據(jù)數(shù)的定義,填空:____________;____________.

(2)數(shù)有如下運算性質(zhì):.根據(jù)運算性質(zhì),計算:

①若,求

②若,,求.

(3)若設(shè),,則下列算式中錯誤的是________(直接填序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,對角線ACBD相交于點O,點EBC上的一個動點,連接DE, AC于點F.

(1)如圖①,當(dāng)時,求的值;

(2)如圖②當(dāng)DE平分∠CDB時,求證:AF=OA;

(3)如圖③,當(dāng)點EBC的中點時,過點FFGBC于點G,求證:CG=BG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,,的中點,若動點1的速度從點出發(fā),沿著的方向運動,設(shè)點的運動時間為秒(),連接,當(dāng)是直角三角形時,的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一張寬為6cm的平行四邊形紙帶ABCD如圖1所示,AB=10cm,小明用這張紙帶將底面周長為10cm直三棱柱紙盒的側(cè)面進行包貼(要求包貼時沒有重疊部分). 小明通過操作后發(fā)現(xiàn)此類包貼問題可將直三棱柱的側(cè)面展開進行分析.

(1)若紙帶在側(cè)面纏繞三圈,正好將這個直三棱柱紙盒的側(cè)面全部包貼滿.則紙帶AD的長度為____ cm;

(2)若AD=100cm,紙帶在側(cè)面纏繞多圈,正好將這個直三棱柱紙盒的側(cè)面全部包貼滿.則這個直三棱柱紙盒的高度是_____cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列關(guān)于一元二次方程x2+bx+c0的四個命題

①當(dāng)c0b≠0時,這個方程一定有兩個不相等的實數(shù)根;

②當(dāng)c≠0時,若p是方程x2+bx+c0的一個根,則是方程cx2+bx+10的一個根;

③若c0,則一定存在兩個實數(shù)mn,使得m2+mb+c0n2+nb+c;

④若p,q是方程的兩個實數(shù)根,則pq,

其中是假命題的序號是(  )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案