【題目】如圖,一次函數(shù)的圖像分別與軸、軸交于點,以線段為邊在第四象限內(nèi)作等腰直角,且.
(1)試寫出點的坐標(biāo): (_ _,_ ___), (_ ,_ )
(2)求點的坐標(biāo);
(3)求直線的函數(shù)表達(dá)式
【答案】(1),;(2);(3).
【解析】
(1)根據(jù)坐標(biāo)軸上的點的坐標(biāo)特征,結(jié)合一次函數(shù)的解析式求出A、B兩點的坐標(biāo);
(2)作CD⊥x軸于點D,由全等三角形的判定定理可得出△AOB≌△CDA,由全等三角形的性質(zhì)可知AD=OB=3,CD=OA=4,故可得出C點坐標(biāo),
(3)使用待定系數(shù)法即可求出直線BC的解析式.
(1)(1)一次函數(shù)中,
令y=0,解得x=4.
則點A的坐標(biāo)是(4,0).
令x=0得y=-3.
則點B的坐標(biāo)是(0,-3).
故答案為,.
(2)過點C作CD⊥x軸,垂足為點D
∵,
∴,
又
∴
又,AB=AC
∴△AOB≌△CDA
∴AD=OB=3,CD=OA=4
∴OD=7
∴C(7,﹣4)
(3)設(shè)直線BC的函數(shù)表達(dá)式為y=kx+b
把B(0,﹣3),C(7,﹣4)代入上式
得
解之得
∴直線BC的函數(shù)表達(dá)式為y=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系 中,直線 與 軸交于點 ,直線與軸交于點 ,與 相交于點.
(1)求點的坐標(biāo);
(2)在 軸上一點 ,若,求點的坐標(biāo);
(3)直線 上一點,平面內(nèi)一點 ,若以 、 、 為頂點的三角形與全等,求點 的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與直線交于、兩點,過作軸交拋物線于點,直線交軸于點.
求、、三點的坐標(biāo);
若點是線段上的一個動點,過作軸交拋物線于點,連接、,當(dāng)時,求的值;
如圖,連接,及,設(shè)點是的中點,點是線段上任意一點,將沿邊翻折得到,求當(dāng)為何值時,與重疊部分的面積是面積的.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖.一次函數(shù)y=x+1的圖象L1交y軸于點A,一次函數(shù)y=﹣x+3的圖象L2交x軸于點B,L1與L2交于點C.
(1)求點A與點B的坐標(biāo);
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有這樣一個問題:探究函數(shù)的圖象與性質(zhì).
小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)的圖象與性質(zhì)進行了探究.
下面是小東的探究過程,請補充完成:
(1)化簡函數(shù)解析式,當(dāng)時,___________,當(dāng)時____________;
(2)根據(jù)(1)中的結(jié)果,請在所給坐標(biāo)系中畫出函數(shù)的圖象;備用圖
(3)結(jié)合畫出的函數(shù)圖象,解決問題:若關(guān)于的方程只有一個實數(shù)根,直接寫出實數(shù)的取值范圍:___________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】合肥三十八中為預(yù)防秋季疾病傳播,對教室進行“薰藥消毒”.已知藥物在燃燒釋放過程中,室內(nèi)空氣中每立方米含藥量(毫克)與燃燒時間(分鐘)之間的關(guān)系如圖所示(即圖中線段和雙曲線在點及其右側(cè)的部分),根據(jù)圖象所示信息,解答下列問題:
(1)寫出從藥物釋放開始,與之間的函數(shù)關(guān)系式及自變量的取值范圍;
(2)據(jù)測定,只有當(dāng)空氣中每立方米的含藥量不低于毫克時,對預(yù)防才有作用,且至少持續(xù)作用分鐘以上,才能完全殺死這種病毒,請問這次消毒是否徹底?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖的正方形網(wǎng)格中,每一個小正方形的邊長為1,格點三角形ABC(頂點是網(wǎng)格線交點的三角形)的頂點A、C的坐標(biāo)分別是(-5,5),(-2,3).
(1)請在圖中的網(wǎng)格平面內(nèi)畫出平面直角坐標(biāo)系xOy;
(2)請畫出△ABC關(guān)于y軸對稱的△A1B1C1,并寫出頂點A1,B1,C1的坐標(biāo)
(3)請在x軸上求作一點P,使△PB1C的周長最小.請標(biāo)出點P的位置(保留作圖痕跡,不需說明作圖方法)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知一次函數(shù)的圖像與x軸交于點,與軸交于點.
(1)求直線的解析式;
(2)在坐標(biāo)系中能否找到點,使得且?如果能,求出滿足條件的點的坐標(biāo);如果不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某游樂園有一個滑梯高度AB,高度AC為3米,傾斜角度為58°.為了改善滑梯AB的安全性能,把傾斜角由58°減至30°,調(diào)整后的滑梯AD比原滑梯AB增加多少米?(精確到0.1米)
(參考數(shù)據(jù):sin58°=0.85,cos58°=0.53,tan58°=1.60)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com