【題目】如圖,在Rt△ACB中,∠ACB=90°,AC=BC=3,CD=1,CH⊥BD于H,點O是AB中點,連接OH,則OH=

【答案】

【解析】

試題分析:在BD上截取BE=CH,連接CO,OE,

∵∠ACB=90°CH⊥BD,

∵AC=BC=3,CD=1,

∴BD=,

∴△CDH∽△BDC,

,

∴CH=

∵△ACB是等腰直角三角形,點O是AB中點,

∴AO=OB=OC,∠A=∠ACO=∠BCO=∠ABC=45°,

∴∠OCH+∠DCH=45°,∠ABD+∠DBC=45°,

∵∠DCH=∠CBD,∴∠OCH=∠ABD,

在△CHO與△BEO中,,

∴△CHO≌△BEO,

∴OE=OH,∠BOE=∠HOC,

∵OC⊥BO,

∴∠EOH=90°,

即△HOE是等腰直角三角形,

∵EH=BD﹣DH﹣CH==,

∴OH=EH×=,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在﹣(﹣1)4,23,﹣32,(﹣4)2這四個數(shù)中,最大的數(shù)與最小的數(shù)的和等于(  )

A. 7 B. 15 C. ﹣24 D. ﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠ABC、∠ACB的平分線交于O點,過O點作BC平行線交AB、ACE、F.

探究一:請寫出圖①中線段EFBE、CF間的關(guān)系,并說明理由.

探究二:如圖②,△ABC∠ABC的平分線與△ABC的外角平分線交于O,過點OBC的平行線交ABE,交ACF.這時EFBE、CF的關(guān)系又如何? 請直接寫出關(guān)系式,不需要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請寫出一個是中心對稱圖形而不是軸對稱圖形的多邊形,它的名字可以是_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以下現(xiàn)象:①水管里水的流動;②滑雪運動員在平坦的雪地上滑行;③射出的子彈;④火車在筆直的鐵軌上行駛.其中是平移的是( )
A.①②
B.①③
C.②③
D.②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD中,邊長為10cm,點E在AB邊上,BE=6cm.如果點P在線段BC上以4cm/秒的速度由B點向C點運動,同時,點Q在線段CD上以acm/秒的速度由C點向D點運動,設(shè)運動的時間為t秒,

(1)CP的長為 cm(用含t的代數(shù)式表示);

(2)若以E、B、P為頂點的三角形和以P、C、Q為頂點的三角形全等,求a的值.

(3)若點Q以(2)中的運動速度從點C出發(fā),點P以原來的運動速度從點B同時出發(fā),都逆時針沿正方形ABCD四邊運動.則點P與點Q會不會相遇?若不相遇,請說明理由.若相遇,求出經(jīng)過多長時間點P與點Q第一次在正方形ABCD的何處相遇?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在大樓AB的正前方有一斜坡CD,CD=4米,坡角∠DCE=30°,小紅在斜坡下的點C處測得樓頂B的仰角為60°,在斜坡上的點D處測得樓頂B的仰角為45°,其中點A、C、E在同一直線上.

(1)求斜坡CD的高度DE;

(2)求大樓AB的高度(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,AD是高,E、F分別是ABAC的中點,

(1)AB=10,AC=8,求四邊形AEDF的周長;

(2)EFAD有怎樣的位置關(guān)系,證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】比較大。-4________-1(用“”或“”填空).

查看答案和解析>>

同步練習(xí)冊答案