【題目】(1)己知2a-1的平方根是土3,3a+b-1的平方根是土4,c是的整數(shù)部分,求a+2b+c的算術(shù)平方根.
(2)已知在△ABC中,AB=10,BC=21,AC=17,則△ABC面積是多少?
【答案】
【解析】
(1) 直接利用平方根以及估算無理數(shù)的大小求法分析得出a,b,c的值,進(jìn)而得出答案.
(2) 過點(diǎn)A作AD⊥BC,利用勾股定理求出AD的長,再利用三角形的面積公式求出△ABC的面積即可.
(1) ∵2a-1的平方根是土3,
∴ ,則a=5;
∵3a+b-1的平方根是±4,
∴3a+b-1=16,
則b=2,
∵c是的整數(shù)部分,
∴c=7,
故a+2b+c=5+4+7=16,
則a+2b+c的算術(shù)平方根是:4.
(2) 過點(diǎn)A作AD⊥BC.
設(shè)BD=x,則CD=21-x,
在Rt△ABD中, ,
在Rt△ADC中, ,
∴ ,
,
解得:=6,
∴CD=15,
在Rt△ACD中,AD= =8,
∴△ABC的面積=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中有三點(diǎn)(1,2),(3,1),(-2,-1),其中有兩點(diǎn)同時(shí)在反比例函數(shù)的圖象上,將這兩點(diǎn)分別記為A,B,另一點(diǎn)記為C,
(1)求出的值;
(2)求直線AB對應(yīng)的一次函數(shù)的表達(dá)式;
(3)設(shè)點(diǎn)C關(guān)于直線AB的對稱點(diǎn)為D,P是軸上的一個(gè)動(dòng)點(diǎn),直接寫出PC+PD的最小值(不必說明理由).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:如圖,點(diǎn)M、N把線段AB分割成AM、MN、NB,若以AM、MN、NB為邊的三角形是一個(gè)直角三角形,則稱點(diǎn)M、N是線段AB的勾股分割點(diǎn).
(1)已知M、N把線段分割成AM、MN、NB,若,,,則點(diǎn)M、N是線段AB的勾股分割點(diǎn)嗎?請說明理由.
(2)已知M、N是線段AB的勾股分割點(diǎn),且AM為直角邊,若AB=12,AM=5,求BN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】蘇果超市用5000元購進(jìn)一批新品種的蘋果進(jìn)行試銷,由于試銷狀況良好,超市又調(diào)撥11000元資金購進(jìn)該種蘋果,但這次的進(jìn)價(jià)比試銷時(shí)每千克多了0.5元,購進(jìn)蘋果的數(shù)量是試銷時(shí)的2倍。
(1)試銷時(shí)該品種蘋果的進(jìn)價(jià)是每千克多少元?
(2)如果超市將該品種的蘋果按每千克7元定價(jià)出售,當(dāng)大部分蘋果售出后,余下的400千克按定價(jià)的七折售完,那么超市在這兩次蘋果銷售中共盈利多少元?(7分)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=BC,以AB為直徑的⊙O交BC于點(diǎn)D,交AC于點(diǎn)F,過點(diǎn)C作CE∥AB,與過點(diǎn)A的切線相交于點(diǎn)E,連接AD.
(1)求證:AD=AE;
(2)若AB=6,AC=4,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】合肥百貨大廈某店賣一種狗寶寶布娃娃紀(jì)念品,已知成批購進(jìn)時(shí)單價(jià)為4元,根據(jù)市場調(diào)查,銷售量與銷售單價(jià)在一段時(shí)間內(nèi)滿足如下關(guān)系:單價(jià)為10元時(shí)銷售量為300枚,而單價(jià)每降低1元,就可多售出5枚,那么求可獲得最大利潤為__元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(1,2),B(3,1),C(-2,-1).
(1)在圖中作出關(guān)于軸對稱的.
(2)寫出點(diǎn)的坐標(biāo)(直接寫答案).
A1_____________,B1______________,C1______________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BC邊上的垂直平分線DE交邊BC于點(diǎn)D,交邊AB于點(diǎn)E.若△EDC的周長為24,△ABC與四邊形AEDC的周長之差為12,則線段DE的長為 ( )
A.5B.6C.8D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,將△ABC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)n度后,得到△DEC,點(diǎn)D剛好落在AB邊上.
(1)求n的值;
(2)若F是DE的中點(diǎn),判斷四邊形ACFD的形狀,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com