【題目】在平面直角坐標(biāo)系中,A,B,C三點(diǎn)的坐標(biāo)分別為(-6,7)、(-3,0)、(0,3.

1)畫出△ABC,并求△ABC的面積.

(2)在平面直角坐標(biāo)系中平移△ABC,使點(diǎn)C經(jīng)過平移后的對應(yīng)點(diǎn)為C'(5,4),平移后△ABC得到△A'B'C',畫出平移后的△A'B'C',并寫出點(diǎn)A',B'的坐標(biāo)

3P(-3m)為△ABC中一點(diǎn),將點(diǎn)P向右平移4個(gè)單位后,再向上平移6個(gè)單位得到點(diǎn)Q(n,-3),則m= n=

【答案】1)見解析;(2)見解析,A′(﹣18),B′(2,1);(3)﹣9,1.

【解析】

1)根據(jù)各點(diǎn)在坐標(biāo)系中的位置描出各點(diǎn),并順次連接即可,面積利用矩形面積減去三角形面積求解;
2)根據(jù)圖形平移的性質(zhì)畫出平移后的A′B′C′,并寫出點(diǎn)A′,B′的坐標(biāo)即可;
3)根據(jù)點(diǎn)平移的性質(zhì)即可得出m、n的值.

解:

1)如圖,ABC即為所求

;

作輔助線,過AFx軸,垂足是F, AEy,垂足是E.

ABC的面積=S矩形AFOE-SAFE- SBCO- SAEC

即面積是15.

2C0,3)經(jīng)過平移后的對應(yīng)點(diǎn)為C′5,4),則C點(diǎn)即為,向上平移1個(gè)單位,向右平移5個(gè)單位,相應(yīng)的AB,也一樣平移即可得到:如圖,A′B′C′即為所求,A′(﹣18),B′21);

3)∵P(﹣3m)為ABC中一點(diǎn),將點(diǎn)P向右平移4個(gè)單位后,再向上平移6個(gè)單位得到點(diǎn)Qn,﹣3),

n=3+4=1,m+6=3,

n=1,m=9

故答案為:﹣9,1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,E,F(xiàn),G,H分別是邊AB、BC、CD、DA的中點(diǎn).若四邊形EFGH為菱形,則對角線AC、BD應(yīng)滿足條件__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)不透明的口袋里裝有紅、黃、綠三種顏色的小球(除顏色不同外其余都相同),其中紅球2個(gè),黃球1個(gè),從中任意摸出1球是黃球的概率是.

(1)試求口袋中綠球的個(gè)數(shù);

(2)小明第一次從口袋中任意摸出1球,不放回?cái)噭,第二次再摸?/span>1球.請用列表或畫樹狀圖的方法求摸出“一綠一黃”的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在平行四邊形ABCD和矩形ABEF中,ACDF相交于點(diǎn)G.

(1) 試說明DFCE

(2) ACBFDF,求∠ACE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A∠O的一邊OA上.按要求畫圖并填空:

1)過點(diǎn)A畫直線AB ⊥OA,與∠O的另一邊相交于點(diǎn)B

2)過點(diǎn)AOB的垂線段AC,垂足為點(diǎn)C;

3)過點(diǎn)C畫直線CD∥OA ,交直線AB于點(diǎn)D;

4∠CDB= °;

5)如果OA=8,AB=6,OB=10,則點(diǎn)A到直線OB的距離為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),在△ABC中,∠C=90°,AB=5cm,BC=3cm,動點(diǎn)P在線段AC上以5cm/s的速度從點(diǎn)A運(yùn)動到點(diǎn)C,過點(diǎn)P作PD⊥AB于點(diǎn)D,將△APD繞PD的中點(diǎn)旋轉(zhuǎn)180°得到△A′DP,設(shè)點(diǎn)P的運(yùn)動時(shí)間為x(s).

(1)當(dāng)點(diǎn)A′落在邊BC上時(shí),求x的值;

(2)在動點(diǎn)P從點(diǎn)A運(yùn)動到點(diǎn)C過程中,當(dāng)x為何值時(shí),△A′BC是以A′B為腰的等腰三角形;

(3)如圖(2),另有一動點(diǎn)Q與點(diǎn)P同時(shí)出發(fā),在線段BC上以5cm/s的速度從點(diǎn)B運(yùn)動到點(diǎn)C,過點(diǎn)Q作QE⊥AB于點(diǎn)E,將△BQE繞QE的中點(diǎn)旋轉(zhuǎn)180°得到△B′EQ,連結(jié)A′B′,當(dāng)直線A′B′與△ABC的一邊垂直時(shí),求線段A′B′的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場用2500元購進(jìn)AB兩種新型節(jié)能臺燈共50盞,這兩種臺燈的進(jìn)價(jià)、標(biāo)價(jià)如下表所示.

類型

價(jià)格

A

B

進(jìn)價(jià)(元/盞)

40

65

標(biāo)價(jià)(元/盞)

60

100

1)這兩種臺燈各購進(jìn)多少盞?

2)在每種臺燈銷售利潤不變的情況下,若該商場計(jì)劃銷售這批臺燈的總利潤至少為1400元,問至少需購進(jìn)B種臺燈多少盞?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,甲、乙兩圖是分別由五個(gè)棱長為“1”的立方塊組成的兩個(gè)幾何體,它們的三視圖中完全一致的是

A. 三視圖都一致 B. 主視圖 C. 俯視圖 D. 左視圖

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某家電銷售商城電冰箱的銷售價(jià)為每臺2100元,空調(diào)的銷售價(jià)為每臺1750元,每臺電冰箱的進(jìn)價(jià)比每臺空調(diào)的進(jìn)價(jià)多400元,商城用80000元購進(jìn)電冰箱的數(shù)量與用64000元購進(jìn)空調(diào)的數(shù)量相等.

求每臺電冰箱與空調(diào)的進(jìn)價(jià)分別是多少?

(2)現(xiàn)在商城準(zhǔn)備一次購進(jìn)這兩種家電共100臺,設(shè)購進(jìn)電冰箱x臺,這100臺家電的銷售總利潤為y元,要求購進(jìn)空調(diào)數(shù)量不超過電冰箱數(shù)量的2倍,總利潤不低于13000元,請分析合理的方案共有多少種?并確定獲利最大的方案以及最大利潤.

查看答案和解析>>

同步練習(xí)冊答案