【題目】已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分線EF分別交AD、BC于點(diǎn)E、F,垂足為O.
(1)如圖1,連接AF、CE.求證四邊形AFCE為菱形,并求AF的長(zhǎng);
(2)如圖2,動(dòng)點(diǎn)P、Q分別從A、C兩點(diǎn)同時(shí)出發(fā),沿△AFB和△CDE各邊勻速運(yùn)動(dòng)一周.即點(diǎn)P自A→F→B→A停止,點(diǎn)Q自C→D→E→C停止.在運(yùn)動(dòng)過(guò)程中, ①已知點(diǎn)P的速度為每秒5cm,點(diǎn)Q的速度為每秒4cm,運(yùn)動(dòng)時(shí)間為t秒,當(dāng)A、C、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),求t的值.
②若點(diǎn)P、Q的運(yùn)動(dòng)路程分別為a、b(單位:cm,ab≠0),已知A、C、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形,求a與b滿足的數(shù)量關(guān)系式.

【答案】
(1)解:①∵四邊形ABCD是矩形,

∴AD∥BC,

∴∠CAD=∠ACB,∠AEF=∠CFE,

∵EF垂直平分AC,垂足為O,

∴OA=OC,

∴△AOE≌△COF,

∴OE=OF,

∴四邊形AFCE為平行四邊形,

又∵EF⊥AC,

∴四邊形AFCE為菱形,

②設(shè)菱形的邊長(zhǎng)AF=CF=xcm,則BF=(8﹣x)cm,

在Rt△ABF中,AB=4cm,

由勾股定理得42+(8﹣x)2=x2

解得x=5,

∴AF=5cm


(2)解:①顯然當(dāng)P點(diǎn)在AF上時(shí),Q點(diǎn)在CD上,此時(shí)A、C、P、Q四點(diǎn)不可能構(gòu)成平行四邊形;

同理P點(diǎn)在AB上時(shí),Q點(diǎn)在DE或CE上或P在BF,Q在CD時(shí)不構(gòu)成平行四邊形,也不能構(gòu)成平行四邊形.

因此只有當(dāng)P點(diǎn)在BF上、Q點(diǎn)在ED上時(shí),才能構(gòu)成平行四邊形,

∴以A、C、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),PC=QA,

∵點(diǎn)P的速度為每秒5cm,點(diǎn)Q的速度為每秒4cm,運(yùn)動(dòng)時(shí)間為t秒,

∴PC=5t,QA=CD+AD﹣4t=12﹣4t,即QA=12﹣4t,

∴5t=12﹣4t,

解得 ,

∴以A、C、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí), 秒.

②由題意得,四邊形APCQ是平行四邊形時(shí),點(diǎn)P、Q在互相平行的對(duì)應(yīng)邊上.

分三種情況:

i)如圖1,當(dāng)P點(diǎn)在AF上、Q點(diǎn)在CE上時(shí),AP=CQ,即a=12﹣b,得a+b=12;

ii)如圖2,當(dāng)P點(diǎn)在BF上、Q點(diǎn)在DE上時(shí),AQ=CP,即12﹣b=a,得a+b=12;

iii)如圖3,當(dāng)P點(diǎn)在AB上、Q點(diǎn)在CD上時(shí),AP=CQ,即12﹣a=b,得a+b=12.

綜上所述,a與b滿足的數(shù)量關(guān)系式是a+b=12(ab≠0)


【解析】(1)先證明四邊形AFCE為平行四邊形,再根據(jù)對(duì)角線互相垂直平分的平行四邊形是菱形作出判定;根據(jù)勾股定理即可求得AF的長(zhǎng);(2)①分情況討論可知,當(dāng)P點(diǎn)在BF上、Q點(diǎn)在ED上時(shí),才能構(gòu)成平行四邊形,根據(jù)平行四邊形的性質(zhì)列出方程求解即可;②分三種情況討論可知a與b滿足的數(shù)量關(guān)系式.
【考點(diǎn)精析】本題主要考查了線段垂直平分線的性質(zhì)和勾股定理的概念的相關(guān)知識(shí)點(diǎn),需要掌握垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質(zhì)定理:線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市某中學(xué)為備戰(zhàn)省運(yùn)會(huì),在校運(yùn)動(dòng)隊(duì)的學(xué)生中進(jìn)行了全能選手的選拔,并將參加選拔學(xué)生的綜合成績(jī)分成四組,繪成了如下尚不完整的統(tǒng)計(jì)圖表.

組別

成績(jī)

組中值

頻數(shù)

第一組

90≤x<100

95

4

第二組

80≤x<90

85

m

第三組

70≤x<80

75

n

第四組

60≤x<70

65

21

根據(jù)圖表信息,回答下列問(wèn)題:
(1)參加活動(dòng)選拔的學(xué)生共有人;表中m= , n=;
(2)若將各組的組中值視為該組的平均值,請(qǐng)你估算參加選拔學(xué)生的平均成績(jī);
(3)將第一組中的4名學(xué)生記為A、B、C、D,由于這4名學(xué)生的體育綜合水平相差不大,現(xiàn)決定隨機(jī)挑選其中兩名學(xué)生代表學(xué)校參賽,試通過(guò)畫(huà)樹(shù)形圖或列表的方法求恰好選中A和B的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一只不透明的袋子中裝有4個(gè)質(zhì)地、大小均相同的小球,這些小球分別標(biāo)有數(shù)字3,4,5,x.甲、乙兩人每次同時(shí)從袋中各隨機(jī)摸出1個(gè)球,并計(jì)算摸出的這2個(gè)小球上數(shù)字之和,記錄后都將小球放回袋中攪勻,進(jìn)行重復(fù)試驗(yàn).實(shí)驗(yàn)數(shù)據(jù)如下表:

摸球總次數(shù)

10

20

30

60

90

120

180

240

330

450

“和為8”出現(xiàn)的頻數(shù)

2

10

13

24

30

37

58

82

110

150

“和為8”出現(xiàn)的頻率

0.20

0.50

0.43

0.40

0.33

0.31

0.32

0.34

0.33

0.33

解答下列問(wèn)題:
(1)如果實(shí)驗(yàn)繼續(xù)進(jìn)行下去,根據(jù)上表數(shù)據(jù),出現(xiàn)“和為8”的頻率將穩(wěn)定在它的概率附近.估計(jì)出現(xiàn)“和為8”的概率是
(2)當(dāng)x=7時(shí),請(qǐng)用列表法或樹(shù)狀圖法計(jì)算“和為8”的概率;并判斷x=7是否可能.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了綠化校園,我校決定修建一塊長(zhǎng)方形草坪,長(zhǎng)米,寬米,并在草坪上修建如圖所示的十字路,設(shè)小路的寬為米.

用含的式子分別表示出草坪的面積、小路的面積;

寫(xiě)出中多項(xiàng)式的項(xiàng)、次數(shù),并說(shuō)明是幾次幾項(xiàng)式?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥ABE,若AC=6,BC=8,CD=3

1)求DE的長(zhǎng);

2)求△ADB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠B=∠C=36°,AB的垂直平分線交BC于點(diǎn)D,交AB于點(diǎn)H,AC的垂直平分線交BC于點(diǎn)E,交AC于點(diǎn)G,連接AD,AE,則下列結(jié)論錯(cuò)誤的是(
A. =
B.AD,AE將∠BAC三等分
C.△ABE≌△ACD
D.SADH=SCEG

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,點(diǎn)OAC邊上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)O作直線MNBC,設(shè)MN交∠BCA的角平分線于點(diǎn)E,交∠BCA的外角平分線于點(diǎn)F.

(1)求證:EO=FO;

(2)當(dāng)點(diǎn)O運(yùn)動(dòng)到何處時(shí),四邊形AECF是矩形?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明騎單車上學(xué),當(dāng)他騎了一段路時(shí),想起要買某本書(shū),于是又折回到剛經(jīng)過(guò)的某書(shū)店,買到書(shū)后繼續(xù)去學(xué)校.以下是他本次上學(xué)所用的時(shí)間與路程的關(guān)系示意圖.

根據(jù)圖中提供的信息回答下列問(wèn)題:

(1)小明家到學(xué)校的路程是多少米?

(2)在整個(gè)上學(xué)的途中哪個(gè)時(shí)間段小明騎車速度最快,最快的速度是多少米/分?

(3)小明在書(shū)店停留了多少分鐘?

(4)本次上學(xué)途中,小明一共行駛了多少米?一共用了多少分鐘?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=AC,DBC中點(diǎn),四邊形ABDE是平行四邊形,AC、DE相交于點(diǎn)O.

(1)求證:四邊形ADCE是矩形.

(2)若∠AOE=60°,AE=4,求矩形ADCE對(duì)角線的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案