【題目】如圖,正方形ABCD的邊長(zhǎng)為4,延長(zhǎng)CBE使EB2,以EB為邊在上方作正方形EFGB,延長(zhǎng)FGDCM,連接AMAF,HAD的中點(diǎn),連接FH分別與AB,AM交于點(diǎn)N、K:則下列結(jié)論:①△ANH≌△GNF;②∠AFN=∠HFG;③FN2NK;④14.其中正確的結(jié)論有( )

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

【答案】C

【解析】

由正方形的性質(zhì)得到FG=BE=2,∠FGB=90°AD=4,AH=2,∠BAD=90°,求得∠HAN=FGN,AH=FG,根據(jù)全等三角形的定理定理得到ANH≌△GNFAAS),故①正確;根據(jù)全等三角形的性質(zhì)得到∠AHN=HFG,推出∠AFH≠AHF,得到∠AFN≠HFG,故②錯(cuò)誤;根據(jù)全等三角形的性質(zhì)得到AN=AG=1,根據(jù)相似三角形的性質(zhì)得到∠AHN=AMG,根據(jù)平行線的性質(zhì)得到∠HAK=AMG,根據(jù)直角三角形的性質(zhì)得到FN=2NK;故③正確;根據(jù)矩形的性質(zhì)得到DM=AG=2,根據(jù)三角形的面積公式即可得到結(jié)論.

∵四邊形EFGB是正方形,EB=2
FG=BE=2,∠FGB=90°,
∵四邊形ABCD是正方形,HAD的中點(diǎn),
AD=4,AH=2,
BAD=90°,
∴∠HAN=FGN,AH=FG,
∵∠ANH=GNF
∴△ANH≌△GNFAAS),故①正確;
∴∠AHN=HFG,
AG=FG=2=AH,
AF=FG=AH
∴∠AFH≠AHF,


∴∠AFN≠HFG,故②錯(cuò)誤;
∵△ANH≌△GNF,
AN=AG=1,
GM=BC=4,
=2,
∵∠HAN=AGM=90°
∴△AHN∽△GMA,
∴∠AHN=AMG,
ADGM,
∴∠HAK=AMG,
∴∠AHK=HAK
AK=HK,
AK=HK=NK,
FN=HN,
FN=2NK;故③正確;
∵延長(zhǎng)FGDCM,
∴四邊形ADMG是矩形,
DM=AG=2,
SAFN=ANFG=×2×1=1,SADM=ADDM=×4×2=4,
SAFNSADM=14故④正確,
故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,AB6AC8,BC10,PBC邊上一動(dòng)點(diǎn),過(guò)線段AP上的點(diǎn)MDEAP交邊AB于點(diǎn)D,交邊AC于點(diǎn)E,點(diǎn)NDE中點(diǎn),若四邊形ADPE的面積為18,則AN的最大值=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】汽車剎車后,還會(huì)繼續(xù)向前滑行一段距離,這段距離稱為“剎車距離”剎車距離ym)與剎車時(shí)的車速xkm/h)的部分關(guān)系如表:

剎車時(shí)的車速

0

50

100

200

剎車距離

0

5.5

46.5

82

1)求出yx之間的函數(shù)關(guān)系式.

2)一輛車在限速120km/h的高速公路上行駛時(shí)出了事故,事后測(cè)得它的剎車距離為40.6m,問(wèn):該車在發(fā)生事故時(shí)是否超速行駛?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,DOBC的中點(diǎn),A是弧BC上一點(diǎn),OABC交于點(diǎn)E,若AO=8,BC=12,EO=BE,則線段OD=_____,BE=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用恰當(dāng)?shù)姆椒ń庀铝蟹匠蹋?/span>

132x+1227

22x23x10

33x122x1

4x2﹣(2x+120

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是正方形,ABE是等邊三角形,M為對(duì)角線BD(不含B點(diǎn))上任意一點(diǎn),將BM繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到BN,連接ENAM、CM

1)求證:AMB≌△ENB;

2)當(dāng)M點(diǎn)在何處時(shí),AM +CM的值最小,并說(shuō)明理由;

3)當(dāng)M點(diǎn)在何處時(shí),AM +BM +CM的值最小,并說(shuō)明理由;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商品的進(jìn)價(jià)為每件40元,如果售價(jià)為每件50元,每個(gè)月可賣出210件;如果售價(jià)超過(guò)50元但不超過(guò)80元,每件商品的售價(jià)每上漲1元,則每個(gè)月少賣1件;如果售價(jià)超過(guò)80元后,若再漲價(jià),則每漲1元每月少賣3件.設(shè)每件商品的售價(jià)為x元,每個(gè)月的銷售量為y件.
1)求yx的函數(shù)關(guān)系式并直接寫出自變量x的取值范圍;
2)設(shè)每月的銷售利潤(rùn)為W,請(qǐng)直接寫出Wx的函數(shù)關(guān)系式;
3)每件商品的售價(jià)定為多少元時(shí),每個(gè)月可獲得最大利潤(rùn)?最大的月利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某品牌的洗衣機(jī)在市場(chǎng)上享有美譽(yù),市場(chǎng)標(biāo)價(jià)為元,進(jìn)價(jià)為元,市場(chǎng)調(diào)研發(fā)現(xiàn),若在市場(chǎng)價(jià)格的基礎(chǔ)上降價(jià)會(huì)引起銷售量的增加,當(dāng)銷售價(jià)格為元時(shí),月銷售量為臺(tái);當(dāng)銷售價(jià)格為元時(shí),月銷售量為臺(tái).若月銷售量(臺(tái))與銷售價(jià)格(元)滿足一次函數(shù)關(guān)系.

1)求之間的函數(shù)關(guān)系式;

2)公司決定采取降價(jià)促銷,迅速占領(lǐng)市場(chǎng)的方案,請(qǐng)根據(jù)以上信息,判斷當(dāng)銷售價(jià)格定為多少元時(shí),公司的月利潤(rùn)最大,并求出的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方形ABCD的邊長(zhǎng)為1,GCD邊上的一個(gè)動(dòng)點(diǎn)(點(diǎn)GCD不重合),以CG為一邊向正方形ABCD外作正方形GCEF,連接DEBG的延長(zhǎng)線于點(diǎn)H.

1)求證:①△BCG≌△DCE;②BH⊥DE.

2)當(dāng)點(diǎn)G運(yùn)動(dòng)到什么位置時(shí),BH垂直平分DE?請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案