【題目】如圖,在平面直角坐標(biāo)系第一象限中有一點B. 要求:用尺規(guī)作圖作一條直線AC,使它與x軸和y軸的正半軸分別交于點A和點C,且使∠ABC=90°,△ABC與△AOC全等.

(1)小明的作法是:過B點分別向x 軸、y 軸作垂線,垂足為A、C,連接A、C,則直線AC即為所求.請你幫助小明在圖中完成作圖(保留作圖痕跡);

(2)請在圖中再畫出另一條滿足條件的直線AC,并說明理由.

【答案】1)詳見解析;(2)詳見解析.

【解析】

1)根據(jù)題干要求尺規(guī)作圖即可.

2)利用三角形全等的性質(zhì),作OB的垂直平分線即可解答.

解:(1

(2)

如圖所示,直線AC即為所求

由作圖知:直線AC是線段OB的垂直平分線,

CO=CB,AO=AB

又∵ AC=AC,

COA≌△CBA (SSS)

CBA=COA=90°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,B點坐標(biāo)為(﹣20),A點坐標(biāo)為(a,b),且b0

1)若b0,且∠ABO:∠BAO:∠AOB10521,在AB上取一點C,使得y軸平分∠COA.在x軸上取點D,使得CD平分∠BCO,過CCD的垂線CE,交x軸于E

依題意補(bǔ)全圖形;

求∠CEO的度數(shù);

2)若b是定值,過O作直線AB的垂線OH,垂足為H,則OH的最大值是   .(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方形ACDF中,ACDF,點BCD上,點EDF上,BCDEaACBDb,ABBEc,且ABBE

1)用兩種不同的方法表示出長方形ACDF的面積S,并探求a,b,c之間的等量關(guān)系(需要化簡)

2)請運(yùn)用(1)中得到的結(jié)論,解決下列問題:

①求當(dāng)c5,a3時,求S的值;

②當(dāng)cb8,a12時,求S的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,正方形OABC的邊OA、OC分別在x軸、y軸上,點B的坐標(biāo)為(2,2),反比例函數(shù)x0,k≠0)的圖像經(jīng)過線段BC的中點D.

1)求k的值;

2)若點P(x,y)在該反比例函數(shù)的圖像上運(yùn)動(不與點D重合),過點PPRy軸于點R,PQBC所在直線于點Q,記四邊形CQPR的面積為S,求S關(guān)于x的解析式并寫出x的取值范圍。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一條不完整的數(shù)軸上從左到右有點,其中點到點的距離為3,點到點的距離為7,如圖所示:設(shè)點所對應(yīng)的數(shù)的和是

1)若以為原點,則的值是

2)若原點在圖中數(shù)軸上,且點到原點的距離為4,求的值.

3)動點點出發(fā),以每秒2個單位長度的速度向終點移動,動點同時從點出發(fā),以每秒1個單位的速度向終點移動,當(dāng)幾秒后,兩點間的距離為2?(直接寫出答案即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電器超市銷售每臺進(jìn)價分別為200,170元的A,B兩種型號的電風(fēng)扇,表中是近兩周的銷售情況:

銷售時段

銷售數(shù)量

銷售收入

A種型號

B種型號

第一周

3

5

1800

第二周

4

10

3100

(進(jìn)價、售價均保持不變,利潤=銷售收入-進(jìn)貨成本)

(1)A,B兩種型號的電風(fēng)扇的銷售單價.

(2)若超市準(zhǔn)備用不多于5400元的金額再采購這兩種型號的電風(fēng)扇共30,A種型號的電風(fēng)扇最多能采購多少臺?

(3)(2)的條件下,超市銷售完這30臺電風(fēng)扇能否實現(xiàn)利潤為1400元的目標(biāo)?若能,請給出相應(yīng)的采購方案;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一副三角板按不同位置擺放,∠α與∠β互余的是_____,∠α與∠β互補(bǔ)的是______,∠α與∠β相等的是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)材料1:一般地,n個相同因數(shù)a相乘: 記為 ,此時,3叫做以2為底的8的對數(shù),記為log28(即log28=3).那么,log39=________,=________;

(2)材料2:新規(guī)定一種運(yùn)算法則:自然數(shù)1n的連乘積用n!表示,例如:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,…在這種規(guī)定下,請你解決下列問題:

5!=________

②已知x為整數(shù),求出滿足該等式的.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,,AE平分,,交AC延長線于F,且垂足為E,則下列結(jié)論:;;;其中正確的結(jié)論有______填寫序號

查看答案和解析>>

同步練習(xí)冊答案