【題目】如圖,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以點C為圓心,CB長為半徑作弧,交AB于點D;再分別以點B和點D為圓心,大于 BD的長為半徑作弧,兩弧相交于點E,作射線CE交AB于點F,則AF的長為(
A.5
B.6
C.7
D.8

【答案】B
【解析】解:連接CD, ∵在△ABC中,∠ACB=90°,∠A=30°,BC=4,
∴AB=2BC=8.
∵作法可知BC=CD=4,CE是線段BD的垂直平分線,
∴CD是斜邊AB的中線,
∴BD=AD=4,
∴BF=DF=2,
∴AF=AD+DF=4+2=6.
故選B.

【考點精析】解答此題的關(guān)鍵在于理解含30度角的直角三角形的相關(guān)知識,掌握在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式 ≥1,并把它的解集在數(shù)軸上表示出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某村耕地總面積為50公頃,且該村人均耕地面積y(單位:公頃/人)與總?cè)丝趚(單位:人)的函數(shù)圖象如圖所示,則下列說法正確的是(
A.該村人均耕地面積隨總?cè)丝诘脑龆喽龆?/span>
B.當(dāng)該村總?cè)丝跒?0人時,人均耕地面積為1公頃
C.若該村人均耕地面積為2公頃,則總?cè)丝谟?00人
D.該村人均耕地面積y與總?cè)丝趚成正比例

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,正方形ABCD與正方形AEFG的邊AB、AE(AB<AE)在一條直線上,正方形AEFG以點A為旋轉(zhuǎn)中心逆時針旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為α.在旋轉(zhuǎn)過程中,兩個正方形只有點A重合,其它頂點均不重合,連接BE、DG.
(1)當(dāng)正方形AEFG旋轉(zhuǎn)至如圖2所示的位置時,求證:BE=DG;
(2)如圖3,如果α=45°,AB=2,AE=4 ,求點G到BE的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某藍莓種植生產(chǎn)基地產(chǎn)銷兩旺,采摘的藍莓部分加工銷售,部分直接銷售,且當(dāng)天都能銷售完,直接銷售是40元/斤,加工銷售是130元/斤(不計損耗).已知基地雇傭20名工人,每名工人只能參與采摘和加工中的一項工作,每人每天可以采摘70斤或加工35斤,設(shè)安排x名工人采摘藍莓,剩下的工人加工藍莓.
(1)若基地一天的總銷售收入為y元,求y與x的函數(shù)關(guān)系式;
(2)試求如何分配工人,才能使一天的銷售收入最大?并求出最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AE∥BF,AC平分∠BAE,且交BF于點C,BD平分∠ABF,且交AE于點D,連接CD.
(1)求證:四邊形ABCD是菱形;
(2)若∠ADB=30°,BD=6,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點O是矩形紙片ABCD的對稱中心,E是BC上一點,將紙片沿AE折疊后,點B恰好與點O重合.若BE=3,則折痕AE的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】威麗商場銷售A,B兩種商品,售出1件A種商品和4件B種商品所得利潤為600元,售出3件A種商品和5件B種商品所得利潤為1100元.
(1)求每件A種商品和每件B種商品售出后所得利潤分別為多少元;
(2)由于需求量大,A、B兩種商品很快售完,威麗商場決定再一次購進A、B兩種商品共34件.如果將這34件商品全部售完后所得利潤不低于4000元,那么威麗商場至少需購進多少件A種商品?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=ax2+bx+3(a≠0)過A(4,4),B(2,m)兩點,點B到拋物線對稱軸的距離記為d,滿足0<d≤1,則實數(shù)m的取值范圍是(
A.m≤2或m≥3
B.m≤3或m≥4
C.2<m<3
D.3<m<4

查看答案和解析>>

同步練習(xí)冊答案