【題目】在某校組織的交通安全宣傳教育月活動中,八年級數(shù)學(xué)興趣小組的同學(xué)進(jìn)行了如下的課外實踐活動.具體內(nèi)容如下:在一段筆直的公路上選取兩點A、B,在公路另一側(cè)的開闊地帶選取一觀測點C,在C處測得點A位于C點的南偏西45°方向,且距離為100米,又測得點B位于C點的南偏東60°方向.已知該路段為鄉(xiāng)村公路,限速為60千米/時,興趣小組在觀察中測得一輛小轎車經(jīng)過該路段用時13秒,請你幫助他們算一算,這輛小車是否超速?(參考數(shù)據(jù):≈1.41,≈1.73,計算結(jié)果保留兩位小數(shù))

【答案】小車的速度為21/秒;時速為75.6千米/>60千米/時,所以超速了.

【解析】

CDAB于點D,據(jù)題意可得∠A=45°,∠CBD=30°,在RtADCRtCDB中,分別求出ADBD的值,則AB可求,進(jìn)而可求小轎車經(jīng)過該路段的速度,與限速60千米/時作比較即得結(jié)論.

解:如圖,作CDAB于點D

∵在RtADC中,∠ACD=45°AC=100,

CD=ACcosACD=AC=100

AD=CD=100

∵在RtCDB中,∠BCD=60°,

∴∠CBD=30°,

BD=CD=100

AB=AD+BD=100+100=100+1≈273

又∵小轎車經(jīng)過AB路段用時13秒,

∴小轎車的速度為=21/秒.

而該路段限速為60千米/≈16.67/秒,

2116.67,

∴這輛小轎車超速了.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角坐標(biāo)系中,點Ba,0),點C0,b),點A在第一象限.若a,b滿足(at2+|bt|=0t0).

1)證明:OB=OC.

2)如圖1,連接AB,過AADABy軸于D,在射線AD上截取AE=AB,連接CEFCE的中點,連接AFOA,當(dāng)點A在第一象限內(nèi)運動(AD不過點C)時,證明:∠OAF的大小不變.

3)如圖2,B′B關(guān)于y軸對稱,M在線段BC上,NCB′的延長線上,且BM=NB′,連接MNx軸于點T,過TTQMNy軸于點Q,求點Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中國夢是中華民族每個人的夢,也是每個中小學(xué)生的夢.各中小學(xué)開展經(jīng)典誦讀活動,無疑是中國夢教育這一宏大樂章里的響亮音符.某中學(xué)在全校800名學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行調(diào)查,調(diào)查內(nèi)容分為四種::非常喜歡,:喜歡,:一般,:不喜歡

被調(diào)查的同學(xué)只能選取其中的一種.根據(jù)調(diào)查結(jié)果,繪制出兩個不完整的統(tǒng)計圖(圖形如下),并根據(jù)圖中信息,回答下列問題:

1)本次調(diào)查中,一共調(diào)查了多少名學(xué)生?

2)條形統(tǒng)計圖中,______________________;

3)在扇形統(tǒng)計圖中,:喜歡所在扇形的圓心角的度數(shù)是多少?

4)請估計該學(xué)校800名學(xué)生中:非常喜歡:喜歡經(jīng)典誦讀的學(xué)生共有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某廣場一燈柱AB被一鋼纜CD固定,CD與地面成40°夾角,且CB=5米.

1)求鋼纜CD的長度;(精確到01米)

2)若AD=2米,燈的頂端E距離A16米,且∠EAB=120°,則燈的頂端E距離地面多少米?

(參考數(shù)據(jù):tan400=084, sin400=064, cos400=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列計算過程,猜想立方根.

=1 =8 =27 =64 =125 =216 =343 =512 =729

1)小明是這樣試求出19683的立方根的,先估計19683的立方根的個位數(shù), 猜想它的個位數(shù)為 , 又由<19000< ,猜想19683的立方根十位數(shù)為 ,驗證得19683的立方根是 .

2)請你根據(jù)(1)中小明的方法,完成如下填空:

= ; = ;③= .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】結(jié)合圖形填空:

已知,如圖,∠BAE+AED=180°,∠M=N,試說明:∠1=2

解:∵∠BAE+AED=180°

ABCD

∴∠BAE=      

又∵∠M=N (已知)

AN      

∴∠NAE=      (兩直線平行,內(nèi)錯角相等)

∴∠BAE﹣∠NAE=            

即∠1=2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】潮州旅游文化節(jié)開幕前,某鳳凰茶葉公司預(yù)測今年鳳凰茶葉能夠暢銷,就用32000元購進(jìn)了一批鳳凰茶葉,上市后很快脫銷,茶葉公司又用68000元購進(jìn)第二批鳳凰茶葉,所購數(shù)量是第一批購進(jìn)數(shù)量的2倍,但每千克鳳凰茶葉進(jìn)價多了10元.

(1)該鳳凰茶葉公司兩次共購進(jìn)這種鳳凰茶葉多少千克?

(2)如果這兩批茶葉每千克的售價相同,且全部售完后總利潤率不低于20%,那么每千克售價至少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代數(shù)學(xué)的經(jīng)典著作,書中有一個問題:“今有黃金九枚,白銀一十一枚,稱之重適等.交易其一,金輕十三兩.問金、銀一枚各重幾何?”.意思是:甲袋中裝有黃金9枚(每枚黃金重量相同),乙袋中裝有白銀11枚(每枚白銀重量相同),稱重兩袋相等.兩袋互相交換1枚后,甲袋比乙袋輕了13兩(袋子重量忽略不計).問黃金、白銀每枚各重多少兩?設(shè)每枚黃金重x兩,每枚白銀重y兩,根據(jù)題意得( 。

A.

B.

C.

D.

查看答案和解析>>

同步練習(xí)冊答案