如圖,正方形ABCD中,AB=6,點E在邊CD上,且CD=3DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF.
(Ⅰ)請寫出圖中一對全等的三角形    (寫出一對即可).
(Ⅱ)有下列結(jié)論:
①BG=GC;②AG∥CF;③S△FGC=3;④圖中與∠AGB相等的角有5個.
其中,正確結(jié)論的序號是    (把你認為正確結(jié)論的序號都填上).
【答案】分析:(Ⅰ)根據(jù)翻折的性質(zhì)可得AF=AD,∠AFE=90°,然后利用“HL”證明Rt△ADE和Rt△AFE全等(或Rt△ABG和Rt△AFG全等);
(Ⅱ)先求出DE、CE的長,從而得到EF,設(shè)BG=x,然后表示出GF,再求出CG、EG的長,然后在Rt△CEG中,利用勾股定理列式求出x的值,從而得到BG=CG,判定①正確;再根據(jù)等邊對等角的性質(zhì)得到∠GCF=∠GFC,然后利用三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和求出∠GCF+∠GFC=∠AGB+∠AGF,從而求出∠GCF=∠AGB,根據(jù)同位角相等,兩直線平行即可證明AG∥CF,判定②正確;先求出△CEG的面積,再根據(jù)等高的三角形的面積的比等于底邊的比求出△FGC的面積為3.6,判定③錯誤;找出與∠AGB相等的角只有4個,判定④錯誤.
解答:解:(Ⅰ)∵△ADE沿AE對折至△AFE,
∴AF=AD,∠AFE=90°,
∵四邊形ABCD是正方形,
∴AB=AF,
在Rt△ADE和Rt△AFE中,
,
∴Rt△ADE≌Rt△AFE(HL),
[或在Rt△ABG和Rt△AFG中,
,
∴Rt△ABG≌Rt△AFG(HL);]

(Ⅱ)∵CD=3DE,正方形ABCD的邊長AB=6,
∴DE=×6=2,CE=CD-DE=6-2=4,
∴EF=DE=2,
∵Rt△ABG≌Rt△AFG,
∴設(shè)FG=BG=x,
則EG=x+2,CG=BC-BG=6-x,
在Rt△CEG中,EG2=CG2+CE2,
即(x+2)2=(6-x)2+42,
整理得,16x=48,
解得x=3,
∴CG=6-x=6-3=3,
∴BG=CG,故①正確;
∵FG=CG=3,
∴∠GCF=∠GFC,
又∵Rt△ABG≌Rt△AFG,
∴∠AGB=∠AGF,
根據(jù)三角形的外角性質(zhì),∠GCF+∠GFC=∠AGB+∠AGF,
∴∠GCF=∠AGB,
∴AG∥CF,故②正確;
△CEG的面積=CE•CG=×4×3=6,
∵EF=2,F(xiàn)G=3,
∴S△FGC=×6=3.6,故③錯誤;
與∠AGB相等的角有∠AGF、∠GCF、∠GFC、∠GAD共4個,故④錯誤;
綜上所述,正確的結(jié)論有①②.
故答案為:Rt△ADE≌Rt△AFE;①②.
點評:本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),翻折變換的性質(zhì),勾股定理的應(yīng)用,平行線的判定,以及等高的三角形的面積的比等于對應(yīng)底邊的比的應(yīng)用,綜合性較強,但難度不大,仔細分析便不難求解.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

19、如圖:正方形ABCD,M是線段BC上一點,且不與B、C重合,AE⊥DM于E,CF⊥DM于F.求證:AE2+CF2=AD2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,E點在BC上,AE平分∠BAC.若BE=
2
cm,則△AEC面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,AB=6,點E在邊CD上,且CD=3DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結(jié)論的個數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

17、如圖,正方形ABCD的邊長為4,將一個足夠大的直角三角板的直角頂點放于點A處,該三角板的兩條直角邊與CD交于點F,與CB延長線交于點E,四邊形AECF的面積是
16

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,正方形ABCD的邊CD在正方形ECGF的邊CE上,連接BE、DG.
(1)若ED:DC=1:2,EF=12,試求DG的長.
(2)觀察猜想BE與DG之間的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習冊答案