【題目】如圖①點(diǎn)A,B,C,D在同一直線上,AB=CD,作CE⊥AD,BF⊥AD,且AE=DF.
(1)證明:EF平分線段BC;
(2)若△BFD沿AD方向平移得到圖②時(shí),其他條件不變,(1)中的結(jié)論是否仍成立?請(qǐng)說明理由.
【答案】
(1)證明:∵CE⊥AD,BF⊥AD,
∴∠ACE=∠DBF=90°,
∵AB=CD,
∴AB+BC=BC+CD,即AC=DB,
在Rt△ACE和Rt△DBF中,
,
∴Rt△ACE≌Rt△DBF(HL),
∴CE=FB,
在△CEG和△BFG中,
,
∴△CEG≌△BFG(AAS),
∴CG=BG,即EF平分線段BC;
(2)(1)中結(jié)論成立,理由為:
證明:∵CE⊥AD,BF⊥AD,
∴∠ACE=∠DBF=90°,
∵AB=CD,
∴AB﹣BC=CD﹣BC,即AC=DB,
在Rt△ACE和Rt△DBF中,
,
∴Rt△ACE≌Rt△DBF(HL),
∴CE=FB,
在△CEG和△BFG中,
,
∴△CEG≌△BFG(AAS),
∴CG=BG,即EF平分線段BC.
【解析】(1)由AB=CD,利用等式的性質(zhì)得到AC=BD,再由AE=DF,利用HL得到直角三角形ACE與直角三角形DBF全等,利用全等三角形對(duì)應(yīng)邊相等得到EC=BF,再利用AAS得到三角形ECG與三角形FBG全等,利用全等三角形對(duì)應(yīng)邊相等得到BG=CG,即可得證;(2)(1)中的結(jié)論成立,理由為:由AC=DB,利用等式的性質(zhì)得到AC=BD,再由AE=DF,利用HL得到直角三角形ACE與直角三角形DBF全等,利用全等三角形對(duì)應(yīng)邊相等得到EC=BF,再利用AAS得到三角形ECG與三角形FBG全等,利用全等三角形對(duì)應(yīng)邊相等得到BG=CG,即可得證.
【考點(diǎn)精析】通過靈活運(yùn)用平移的性質(zhì),掌握①經(jīng)過平移之后的圖形與原來的圖形的對(duì)應(yīng)線段平行(或在同一直線上)且相等,對(duì)應(yīng)角相等,圖形的形狀與大小都沒有發(fā)生變化;②經(jīng)過平移后,對(duì)應(yīng)點(diǎn)所連的線段平行(或在同一直線上)且相等即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)不透明的口袋里裝有除顏色外都相同的5個(gè)白球和若干個(gè)紅球,在不允許將球倒出來數(shù)的前提下,小亮為了估計(jì)其中的紅球數(shù),采用如下方法:先將口袋中的球搖勻,再?gòu)目诖镫S機(jī)摸出一球,記下顏色,然后把它放回口袋中,不斷重復(fù)上述過程,小亮共摸了100次,其中有10次摸到白球.因此小亮估計(jì)口袋中的紅球大約有( )個(gè).
A.45
B.48
C.50
D.55
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一組數(shù)據(jù)1,2,3,4,x的平均數(shù)與中位數(shù)相同,則實(shí)數(shù)x的值不可能是( )
A. 0 B. 2.5 C. 3 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O為直線AB上一點(diǎn),∠AOC=110°,OM平分∠AOC,∠MON=90°
(1)求∠BOM的度數(shù);
(2)ON是∠BOC的角平分線嗎?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a,b,c在數(shù)軸上的位置如圖所示,所對(duì)應(yīng)的點(diǎn)分別為A,B,C.
(1)填空:A,B之間的距離為 , B,C之間的距離為 , A,C之間的距離為;
(2)化簡(jiǎn):|a+b|﹣|c﹣b|+|b﹣a|;
(3)a、b、c在數(shù)軸上的位置如圖所示,且c2=4,﹣b的倒數(shù)是它本身,a的絕對(duì)值的相反數(shù)是﹣2,求﹣a+2b﹣c﹣2(a﹣4c﹣b)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】等腰三角形的兩條邊長(zhǎng)分別是3cm和6cm,則該三角形的周長(zhǎng)為( )
A. 12cm B. 15cm C. 12cm或15cm D. 9cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【問題引入】
已知:如圖BE、CF是ΔABC的中線,BE、CF相交于G。求證:
證明:連結(jié)EF
∵E、F分別是AC、AB的中點(diǎn)
∴EF∥BF且EF=BC
∴
【思考解答】
(1)連結(jié)AG并延長(zhǎng)AG交BC于H,點(diǎn)H是否為BC中點(diǎn) (填“是”或“不是”)
(2)①如果M、N分別是GB、GC的中點(diǎn),則四邊形EFMN 是 四邊形。
②當(dāng)的值為 時(shí),四邊形EFMN 是矩形。
③當(dāng)的值為 時(shí),四邊形EFMN 是菱形。
④如果AB=AC,且AB=10,BC=16,則四邊形EFMN的面積=_________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司產(chǎn)銷一種產(chǎn)品,為保證質(zhì)量,每個(gè)周期產(chǎn)銷商品件數(shù)控制在100以內(nèi),產(chǎn)銷成本C是商品件數(shù)x的二次函數(shù),調(diào)查數(shù)據(jù)如表:
產(chǎn)銷商品件數(shù)(x/件) | 10 | 20 | 30 |
產(chǎn)銷成本(C/元) | 120 | 180 | 260 |
商品的銷售價(jià)格(單位:元)為P=35﹣x(每個(gè)周期的產(chǎn)銷利潤(rùn)=Px﹣C)
(1)直接寫出產(chǎn)銷成本C與商品件數(shù)x的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍)
(2)該公司每個(gè)周期產(chǎn)銷多少件商品時(shí),利潤(rùn)達(dá)到220元?
(3)求該公司每個(gè)周期的產(chǎn)銷利潤(rùn)的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com