【題目】如圖,點(diǎn)O為直線AB上一點(diǎn),∠AOC=110°,OM平分∠AOC,∠MON=90°
(1)求∠BOM的度數(shù);
(2)ON是∠BOC的角平分線嗎?請(qǐng)說(shuō)明理由.
【答案】
(1)解:∵OM平分∠AOC,
∴∠AOM= ∠AOC=55°,
∴∠BOM=∠AOB﹣∠AOM=180°﹣55°=125°
(2)解:ON是∠BOC的角平分線.理由如下:
∵∠MON=90°,∠AOB=180°,
∴∠MOC+∠CON=90°,∠AOM+∠BON=90°,
又由(1)可知∠AOM=∠MOC,
∴∠CON=∠BON,
即ON是∠BOC的角平分線
【解析】(1)根據(jù)角的平分線的定義求得∠AOM的度數(shù),然后根據(jù)鄰補(bǔ)角的定義求得∠BOM的度數(shù);(2)首先根據(jù)∠MON=90°,∠AOB=180°,得出∠MOC+∠CON=90°,∠AOM+∠BON=90°,又∠AOM=∠MOC,根據(jù)等角的余角相等即可得到ON是∠BOC的角平分線.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用角的平分線和角的運(yùn)算的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握從一個(gè)角的頂點(diǎn)引出的一條射線,把這個(gè)角分成兩個(gè)相等的角,這條射線叫做這個(gè)角的平分線;角之間可以進(jìn)行加減運(yùn)算;一個(gè)角可以用其他角的和或差來(lái)表示.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點(diǎn)坐標(biāo)為(1,n),且與x軸的一個(gè)交點(diǎn)在點(diǎn)(3,0)和(4,0)之間.則下列結(jié)論:
①a﹣b+c>0;
②3a+b=0;
③b2=4a(c﹣n);
④一元二次方程ax2+bx+c=n﹣1有兩個(gè)不相等的實(shí)數(shù)根.
其中正確結(jié)論的個(gè)數(shù)是( )
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,點(diǎn)O為直線AB上一點(diǎn),過(guò)點(diǎn)O作射線OC,使∠BOC=120°,將有一30度角的直角三角板的直角頂點(diǎn)放在點(diǎn)O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.(圖中∠OMN=30°,∠NOM=90°)
(1)將圖1中的三角板繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)至圖2,使OM在∠BOC的內(nèi)部,且恰好平分∠BOC,問(wèn)直線ON是否平分∠AOC?請(qǐng)說(shuō)明理由;
(2)將圖1中的三角板繞點(diǎn)O按每秒6°的速度沿逆時(shí)針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過(guò)程中,第t秒時(shí),直線ON恰好平分銳角∠AOC,求t;
(3)將圖1中的三角板繞點(diǎn)O順時(shí)針旋轉(zhuǎn)至圖3,使ON在∠AOC的內(nèi)部,請(qǐng)?zhí)骄浚骸螦OM與∠NOC之間的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①點(diǎn)A,B,C,D在同一直線上,AB=CD,作CE⊥AD,BF⊥AD,且AE=DF.
(1)證明:EF平分線段BC;
(2)若△BFD沿AD方向平移得到圖②時(shí),其他條件不變,(1)中的結(jié)論是否仍成立?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】先化簡(jiǎn),再求值:(m﹣1)2﹣m(n﹣2)﹣(m﹣1)(m+1),其中m和n是面積為5的直角三角形的兩直角邊長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算下列各題
(1)12+(﹣18)﹣(﹣7)﹣15
(2)3×(﹣2)﹣(﹣1)÷ ×(﹣3)
(3)﹣12010﹣ ×[2﹣(﹣3)2]
(4)|﹣ |÷( ﹣ )﹣(0.75﹣ ﹣ )×24.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com