【題目】若⊙O的直徑為2,OP=2,則點(diǎn)P與⊙O的位置關(guān)系是:點(diǎn)P在⊙O .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,E是AC邊上的一點(diǎn),且AE=AB,∠BAC=2∠CBE,以AB為直徑作⊙O交AC于點(diǎn)D,交BE于點(diǎn)F.
(1)求證:BC是⊙O的切線;
(2)若AB=8,BC=6,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)算正確的是( )
A. x3+x2=x5B. x4+x4=2x4C. x3+x3=2x6D. x4+x4=x8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一組數(shù)據(jù)1,2,3,4,x的平均數(shù)與中位數(shù)相同,則實(shí)數(shù)x的值不可能是( )
A. 0 B. 2.5 C. 3 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1和圖2中的正方形ABCD和四邊形AEFG都是正方形.
(1)如圖1,連接DE,BG,M為線段BG的中點(diǎn),連接AM,探究AM與DE的數(shù)量關(guān)系和位置關(guān)系,并證明你的結(jié)論;
(2)在圖1的基礎(chǔ)上,將正方形AEFG繞點(diǎn)A逆時針方向旋轉(zhuǎn)到圖2的位置,連結(jié)DE、BG,M為線段BG的中點(diǎn),連結(jié)AM,探究AM與DE的數(shù)量關(guān)系和位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O為直線AB上一點(diǎn),∠AOC=110°,OM平分∠AOC,∠MON=90°
(1)求∠BOM的度數(shù);
(2)ON是∠BOC的角平分線嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a,b,c在數(shù)軸上的位置如圖所示,所對應(yīng)的點(diǎn)分別為A,B,C.
(1)填空:A,B之間的距離為 , B,C之間的距離為 , A,C之間的距離為;
(2)化簡:|a+b|﹣|c﹣b|+|b﹣a|;
(3)a、b、c在數(shù)軸上的位置如圖所示,且c2=4,﹣b的倒數(shù)是它本身,a的絕對值的相反數(shù)是﹣2,求﹣a+2b﹣c﹣2(a﹣4c﹣b)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【問題引入】
已知:如圖BE、CF是ΔABC的中線,BE、CF相交于G。求證:
證明:連結(jié)EF
∵E、F分別是AC、AB的中點(diǎn)
∴EF∥BF且EF=BC
∴
【思考解答】
(1)連結(jié)AG并延長AG交BC于H,點(diǎn)H是否為BC中點(diǎn) (填“是”或“不是”)
(2)①如果M、N分別是GB、GC的中點(diǎn),則四邊形EFMN 是 四邊形。
②當(dāng)的值為 時,四邊形EFMN 是矩形。
③當(dāng)的值為 時,四邊形EFMN 是菱形。
④如果AB=AC,且AB=10,BC=16,則四邊形EFMN的面積=_________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A和點(diǎn)B的坐標(biāo)分別為A(4,0)、B(0,2),將△ABO繞點(diǎn)P(2,2)順時針旋轉(zhuǎn)得到△OCD,點(diǎn)A、B和O的對應(yīng)點(diǎn)分別為點(diǎn)O、C和D,
(1)畫出△OCD,并寫出點(diǎn)C和點(diǎn)D的坐標(biāo);
(2)連接AC,在直線AC的右側(cè)取點(diǎn)M,使∠AMC=45°,
①若點(diǎn)M在x軸上,則點(diǎn)M的坐標(biāo)為 ;
②若△ACM為直角三角形,求點(diǎn)M的坐標(biāo);
(3)若點(diǎn)N滿足∠ANC>45°,請確定點(diǎn)N的位置(不要求說明理由).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com