【題目】一家商鋪進(jìn)行維修,若請(qǐng)甲、乙兩名工人同時(shí)施工,天可以完成,共需支付兩人工資元,若先請(qǐng)甲工人單獨(dú)做天,再請(qǐng)乙工人單獨(dú)做天也可完成,共需付給兩人工資

甲、乙工人單獨(dú)工作一天,商鋪應(yīng)分別支付多少工資?

單獨(dú)請(qǐng)哪名工人完成,商鋪支付維修費(fèi)用較少?

【答案】(1)400元,550元 (2)乙工人

【解析】

1)設(shè)商鋪每天應(yīng)支付甲工人元,乙工人元,由題意得到方程,計(jì)算即可得到答案;

2)設(shè)甲工人效率為天,乙工人效率為天,由題意得到方程,計(jì)算即可得到答案.

解:設(shè)商鋪每天應(yīng)支付甲工人元,乙工人元,根據(jù)題意,得

解得

即商鋪每天應(yīng)支付甲工人元,乙工人

設(shè)甲工人效率為天,乙工人效率為天,根據(jù)題意,得

解得

即單獨(dú)請(qǐng)甲工人完成要支付元,乙工人要支付

單獨(dú)請(qǐng)乙工人完成商鋪支付維修費(fèi)用較少

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若將一幅三角板按如圖所示的方式放置,則下列結(jié)論中不正確的是( )

A. 1=∠3 B. 如果∠230°,則有ACDE

C. 如果∠230°,則有BCAD D. 如果∠230°,必有∠4=∠C

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,E□ABCD的邊BC延長(zhǎng)線上一點(diǎn),AECD于點(diǎn)F,FGADAB于點(diǎn)G

1)填空:圖中與CEF相似的三角形有__________;(寫(xiě)出圖中與CEF相似的所有三角形

2)從(1)中選出一個(gè)三角形,并證明它與CEF相似

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某蔬菜有限公司一年四季都有大量新鮮蔬菜銷往全國(guó)各地,近年來(lái)它的蔬菜產(chǎn)值不斷增加,2014年蔬菜的產(chǎn)值是640萬(wàn)元,2016年產(chǎn)值達(dá)到1000萬(wàn)元.

1)求2015年、2016年蔬菜產(chǎn)值的平均增長(zhǎng)率是多少?

2)若2017年蔬菜產(chǎn)值繼續(xù)穩(wěn)定增長(zhǎng)(即年增長(zhǎng)率與前兩年的年增長(zhǎng)率相同),那么請(qǐng)你估計(jì)2017年該公司的蔬菜產(chǎn)值達(dá)到多少萬(wàn)元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtABO的頂點(diǎn)A是雙曲線與直線第二象限的交點(diǎn),AB軸于點(diǎn)BSABO=.

1)求這兩個(gè)函數(shù)的解析式;

2)求直線與雙曲線的兩個(gè)交點(diǎn)AC的坐標(biāo);

3)求AOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,E是AD邊的中點(diǎn),BE⊥AC于點(diǎn)F,連接DF,分析下列五個(gè)結(jié)論:①△AEF∽△CAB;②CF=2AF;③DF=DC;④S四邊形CDEF=S△ABF,其中正確的結(jié)論有________個(gè)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠BAC=90°ADBC于點(diǎn)D,點(diǎn)OAC邊上一點(diǎn),連接BOADF,OEOBBC邊于點(diǎn)E

(1)求證:△ABF∽△COE;

(2)當(dāng)O為AC邊中點(diǎn), 時(shí),如圖2,求的值;

(3)當(dāng)O為AC邊中點(diǎn), 時(shí),請(qǐng)直接寫(xiě)出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中, ,點(diǎn)D, E分別在上,且,將沿DE折疊,點(diǎn)C恰好落在AB邊上的點(diǎn)F處,如果, ,那么CD的長(zhǎng)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB是⊙O的直徑,點(diǎn)CD在⊙O上,點(diǎn)E在⊙O外,∠EAC=D=60°

1)求∠ABC的度數(shù);

2)求證:AE是⊙O的切線;

3)當(dāng)BC=4時(shí),求劣弧AC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案