【題目】如圖,在RtABC中,∠BAC=90°,ADBC于點(diǎn)D,點(diǎn)OAC邊上一點(diǎn),連接BOADF,OEOBBC邊于點(diǎn)E

(1)求證:△ABF∽△COE;

(2)當(dāng)O為AC邊中點(diǎn), 時(shí),如圖2,求的值;

(3)當(dāng)O為AC邊中點(diǎn), 時(shí),請(qǐng)直接寫出的值.

【答案】(1)證明見解析;

(2);

(3)

【解析】試題分析:(1)要求證:△ABF∽△COE,只要證明∠BAF=∠C,∠ABF=∠COE即可.(2)作OH⊥AC,交BC于H,易證:△OEH和△OFA相似,進(jìn)而證明△ABF∽△HOE,根據(jù)相似三角形的對(duì)應(yīng)邊的比相等,即可得出所求的值.同理可得(3)=n.

試題解析:(1,

,

,

;

2)作,交的延長(zhǎng)線于

, 邊的中點(diǎn),

由(1)有, ,

, ,

,

, , ,

3由(2)得

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,陰影部分是邊長(zhǎng)是的大正方形剪去一個(gè)邊長(zhǎng)是的小正方形后所得到的圖形,將陰影部分通過割、拼,形成新的圖形,給出下列3幅圖割拼方法中,其中能夠驗(yàn)證平方差公式有___________(填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙中每個(gè)小正方形的邊長(zhǎng)都是1

1)在方格紙中畫ABC,使AB=,AC=BC=4;

2)請(qǐng)你用所學(xué)的知識(shí)驗(yàn)證所畫的ABC是不是直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一家商鋪進(jìn)行維修,若請(qǐng)甲、乙兩名工人同時(shí)施工,天可以完成,共需支付兩人工資元,若先請(qǐng)甲工人單獨(dú)做天,再請(qǐng)乙工人單獨(dú)做天也可完成,共需付給兩人工資

甲、乙工人單獨(dú)工作一天,商鋪應(yīng)分別支付多少工資?

單獨(dú)請(qǐng)哪名工人完成,商鋪支付維修費(fèi)用較少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】王亮同學(xué)利用課余時(shí)間對(duì)學(xué)校旗桿的高度進(jìn)行測(cè)量,他是這樣測(cè)量的:把長(zhǎng)為3m的標(biāo)桿垂直放置于旗桿一側(cè)的地面上,測(cè)得標(biāo)桿底端距旗桿底端的距離為15m,然后往后退,直到視線通過標(biāo)桿頂端剛好看到旗桿頂端時(shí)為止,測(cè)得此時(shí)人與標(biāo)桿的水平距離為2m,已知王亮的身高為1.6m,請(qǐng)幫他計(jì)算旗桿的高度.(王亮眼睛距地面的高度視為他的身高)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,ABCDABCD,ACDB

1)求證:ADBC

2)若E,F,G,H分別是ABCD,AC,BD的中點(diǎn),求證:線段EF與線段GH互相平分.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】10分如圖,ABCD中,點(diǎn)E,F(xiàn)在直線AC上點(diǎn)E在F左側(cè),BEDF.

1求證:四邊形BEDF是平行四邊形;

2若ABAC,AB=4,BC=,當(dāng)四邊形BEDF為矩形時(shí),求線段AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把下列各式因式分解

(1)a(a-3)+2(3-a)

(2)

(3)

(4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù)y (m為常數(shù),且m≠5)

(1)若在其圖象的每個(gè)分支上,yx的增大而增大,求m的取值范圍;

(2)若其圖象與一次函數(shù)y=-x1的圖象的一個(gè)交點(diǎn)的縱坐標(biāo)是3,求m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案