如圖,AD是△ABC的中線,E,F(xiàn)分別是AD和AD延長線上的點,且DE=DF,連接BF,CE、下列說法:①CE=BF;②△ABD和△ACD面積相等;③BF∥CE;④△BDF≌△CDE.其中正確的有


  1. A.
    1個
  2. B.
    2個
  3. C.
    3個
  4. D.
    4個
D
分析:根據(jù)題意,結(jié)合已知條件與全等的判定方法對選項一一進行分析論證,排除錯誤答案.
解答:∵AD是△ABC的中線,
∴BD=CD,又∠CDE=∠BDF,DE=DF,
∴△BDF≌△CDE,故④正確;
由△BDF≌△CDE,可知CE=BF,故①正確;
∵AD是△ABC的中線,
∴△ABD和△ACD等底等高,
∴△ABD和△ACD面積相等,故②正確;
由△BDF≌△CDE,可知∠FBD=∠ECD
∴BF∥CE,故③正確.
故選D.
點評:本題考查三角形全等的判定方法和全等三角形的性質(zhì),判定兩個三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應相等時,角必須是兩邊的夾角.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

14、如圖,AD是△ABC的高線,且AD=2,若將△ABC及其高線平移到△A′B′C′的位置,則A′D′和B′D′位置關(guān)系是
垂直
,A′D′=
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,AD是△ABC是角平分線,DE⊥AB于點E,DF⊥AC于點F,連接EF交AD于點G,則AD與EF的位置關(guān)系是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

16、已知:如圖,AD是△ABC的角平分線,且 AB:AC=3:2,則△ABD與△ACD的面積之比為
3:2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,AD是△ABC的邊BC上的中線,已知AB=5cm,AC=3cm.
(1)求△ABD與△ACD的周長之差.
(2)若AB邊上的高為2cm,求AC邊上的高.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AD是△ABC的中線,CE是△ACD的中線,DF是△CDE的中線,如果△DEF的面積是2,那么△ABC的面積為( 。

查看答案和解析>>

同步練習冊答案