【題目】如圖示我國漢代數(shù)學家趙爽在注解《周脾算經(jīng)》時給出的“趙爽弦圖”,圖中的四個直角三角形是全等的,如果大正方形ABCD的面積是小正方形EFGH面積的13倍,那么tan∠ADE的值為
【答案】
【解析】解:設(shè)小正方形EFGH面積是a2 , 則大正方形ABCD的面積是13a2 , ∴小正方形EFGH邊長是a,則大正方形ABCD的面積是 a,
∵圖中的四個直角三角形是全等的,
∴AE=DH,
設(shè)AE=DH=x,
在Rt△AED中,AD2=AE2+DE2 ,
即13a2=x2+(x+a)2
解得:x1=2a,x2=﹣3a(舍去),
∴AE=2a,DE=3a,
∴tan∠ADE= ,故答案為: .
小正方形EFGH面積是a2 , 則大正方形ABCD的面積是13a2 , 則小正方形EFGH邊長是a,則大正方形ABCD的面積是 a,設(shè)AE=DH=x,利用勾股定理求出x,最后利用熟記函數(shù)即可解答.此題中根據(jù)正方形以及直角三角形的面積公式求得直角三角形的三邊,進一步運用銳角三角函數(shù)的定義求解.
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=ax2+bx﹣3經(jīng)過(﹣1,0),(3,0)兩點,與y軸交于點C,直線y=kx與拋物線交于A,B兩點.
(1)寫出點C的坐標并求出此拋物線的解析式;
(2)當原點O為線段AB的中點時,求k的值及A,B兩點的坐標;
(3)是否存在實數(shù)k使得△ABC的面積為 ?若存在,求出k的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB與坐標軸分別交于A(﹣2,0),B(0,1)兩點,與反比例函數(shù)的圖象在第一象限交于點C(4,n),求一次函數(shù)和反比例函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將含有30°角的直角三角板OAB如圖放置在平面直角坐標系中,OB在x軸上,若OA=2,將三角板繞原點O順時針旋轉(zhuǎn)75°,則點A的對應點A′的坐標為( 。
A.( ,﹣1)
B.(1,﹣ )
C.( ,﹣ )
D.(﹣ , )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在2016年體育中考中,某班一學習小組6名學生的體育成績?nèi)缦卤,則這組學生的體育成績的眾數(shù),中位數(shù),方差依次為( 。
成績(分) | 27 | 28 | 30 |
人數(shù) | 2 | 3 | 1 |
A.28,28,1
B.28,27.5,1
C.3,2.5,5
D.3,2,5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在菱形ABCD中,點E,O,F(xiàn)分別為AB,AC,AD的中點,連接CE,CF,OE,OF.
(1)求證:△BCE≌△DCF;
(2)當AB與BC滿足什么關(guān)系時,四邊形AEOF是正方形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店購進一批肥料,為了驗證這批肥料的重量,抽出 10 袋進行稱重,每袋以 50 千克為標準,超出部分記為正,不足部分記為負,10 袋的重量分別如下:+5,﹣3,﹣8,+6,+4,+8,﹣2,﹣12,+8,+5
(1)按每袋 50 千克為標準,抽出的 10 袋肥料的重量超出或不足多少千克?
(2)若購進這批肥料共有 500 袋,問這批肥料的總重量約為多少?
(3)若按每袋 120 元購進,140 元賣出,則賣完這批肥料的總利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為2,對角線AC、BD相交于點O,E是OC的中點,連接BE,過點A作AM⊥BE于點M,交BD于點F.
(1)求證:AF=BE;
(2)求點E到BC邊的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列命題:①有兩個角和第三個角的平分線對應相等的兩個三角形全等;②有兩條邊和第三條邊上的中線對應相等的兩個三角形全等;③有兩條邊和第三條邊上的高對應相等的兩個三角形全等.其中正確的是( 。
A. ①② B. ②③ C. ①③ D. ①②③
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com