【題目】某商店購進一批肥料,為了驗證這批肥料的重量,抽出 10 袋進行稱重,每袋以 50 千克為標準,超出部分記為正,不足部分記為負,10 袋的重量分別如下:+5,﹣3,﹣8,+6,+4,+8,﹣2,﹣12,+8,+5

(1)按每袋 50 千克為標準,抽出的 10 袋肥料的重量超出或不足多少千克?

(2)若購進這批肥料共有 500 袋,問這批肥料的總重量約為多少?

(3)若按每袋 120 元購進,140 元賣出,則賣完這批肥料的總利潤是多少?

【答案】(1)11千克(2)25550千克(3)10000元.

【解析】

(1)求出所有記錄的和,然后根據(jù)正數(shù)和負數(shù)的意義解答;

(2)用每袋超出的質(zhì)量加上500袋的標準質(zhì)量,計算即可得解;

(3)根據(jù)總利潤=每袋的利潤×總袋數(shù),列式計算即可.

(1)+5-3-8+6+4+8-2-12+8+5=11(千克).

答:抽出的10袋肥料的重量超出11千克;

(2)500×+500×50=25550(千克).

答:這批肥料的總重量約為25550千克;

(3)500×(140-120)=10000(元).

答:賣完這批肥料的總利潤是10000元.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A、B、C是數(shù)軸上的三點,O是原點,BO=3,AB=2BO,5AO=3CO.

(1)寫出數(shù)軸上點A、C表示的數(shù);

(2)P、Q分別從A、C同時出發(fā),P以每秒2個單位長度的速度沿數(shù)軸向右勻速運動,Q以每秒6個單位長度的速度沿數(shù)軸向左勻速運動,M為線段AP的中點,N在線段CQ,CN=CQ.設運動的時間為t(t>0).

數(shù)軸上點M、N表示的數(shù)分別是    (用含t的式子表示);

t為何值時,M、N兩點到原點的距離相等?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線與x軸交于A(﹣1,0),B(4,0),與y軸交于C(0,﹣2).

(1)求拋物線的解析式;
(2)H是C關于x軸的對稱點,P是拋物線上的一點,當△PBH與△AOC相似時,求符合條件的P點的坐標(求出兩點即可);
(3)過點C作CD∥AB,CD交拋物線于點D,點M是線段CD上的一動點,作直線MN與線段AC交于點N,與x軸交于點E,且∠BME=∠BDC,當CN的值最大時,求點E的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖示我國漢代數(shù)學家趙爽在注解《周脾算經(jīng)》時給出的“趙爽弦圖”,圖中的四個直角三角形是全等的,如果大正方形ABCD的面積是小正方形EFGH面積的13倍,那么tan∠ADE的值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明在學習了《展開與折疊》這一課后,明白了很多幾何體都能展開成平面圖形.于是他在家用剪刀展開了一個長方體紙盒,可是一不小心多剪了一條棱,把紙盒剪成了兩部分,即圖中的①和②.根據(jù)你所學的知識,回答下列問題:

(1)小明總共剪開了_______條棱.

(2)現(xiàn)在小明想將剪斷的②重新粘貼到①上去,而且經(jīng)過折疊以后,仍然可以還原成一個長方體紙盒,你認為他應該將剪斷的紙條粘貼到①中的什么位置?請你幫助小明在①上補全.

(3)小明說:他所剪的所有棱中,最長的一條棱是最短的一條棱的5倍.現(xiàn)在已知這個長方體紙盒的底面是一個正方形,并且這個長方體紙盒所有棱長的和是880cm,求這個長方體紙盒的體積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,,,,則的度數(shù)是  

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為增強學生體質(zhì),某中學在體育課中加強了學生的長跑訓練.在一次女子800米耐力測試中,小靜和小茜在校園內(nèi)200米的環(huán)形跑道上同時起跑,同時到達終點;所跑的路程S(米)與所用的時間t(秒)之間的函數(shù)圖象如圖所示,則她們第一次相遇的時間是起跑后的第(  )秒

A. 80 B. 105 C. 120 D. 150

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一次函數(shù)y=ax+b和反比例函數(shù)y= 在同一平面直角坐標系中的圖象如圖所示,則二次函數(shù)y=ax2+bx+c的圖象大致為( 。

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC是等邊三角形,AN=BM,BN,MC相交于O,CH⊥BN于點H,求證:2OH=OC.

查看答案和解析>>

同步練習冊答案