18.如圖,在△ABC中,∠B=∠C,AB=10cm,BC=8cm,D為AB的中點(diǎn),點(diǎn)P在線段上以3cm/s 的速度由點(diǎn)B向點(diǎn)C運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上以相同速度由點(diǎn)C向點(diǎn)A運(yùn)動(dòng),一個(gè)點(diǎn)到達(dá)終點(diǎn)后另一個(gè)點(diǎn)也停止運(yùn)動(dòng).當(dāng)△BPD與△CQP全等時(shí),求點(diǎn)P運(yùn)動(dòng)的時(shí)間.

分析 根據(jù)等邊對(duì)等角可得∠B=∠C,然后表示出BD、BP、PC、CQ,再根據(jù)全等三角形對(duì)應(yīng)邊相等,分①BD、PC是對(duì)應(yīng)邊,②BD與CQ是對(duì)應(yīng)邊兩種情況討論求解即可.

解答 解:∵AB=AC,
∴∠B=∠C,
設(shè)點(diǎn)P、Q的運(yùn)動(dòng)時(shí)間為t,則BP=3t,CQ=3t,
∵AB=10cm,BC=8cm,點(diǎn)D為AB的中點(diǎn),
∴BD=$\frac{1}{2}$×10=5cm,
PC=(8-3t)cm,
①BD、PC是對(duì)應(yīng)邊時(shí),∵△BPD與△CQP全等,
∴BD=PC,BP=CQ,
∴5=8-3t且3t=3t,
解得t=1,
②BD與CQ是對(duì)應(yīng)邊時(shí),∵△BPD與△CQP全等,
∴BD=CQ,BP=PC,
∴5=3t,3t=8-3t,
解得t=$\frac{5}{3}$且t=$\frac{4}{3}$(舍去),
綜上所述,△BPD與△CQP全等時(shí),點(diǎn)P運(yùn)動(dòng)的時(shí)間為1秒.

點(diǎn)評(píng) 本題考查了全等三角形的對(duì)應(yīng)邊相等的性質(zhì),等邊對(duì)等角的性質(zhì),根據(jù)對(duì)應(yīng)角分情況討論是本題的難點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

8.如圖,已知MB=ND,∠MBA=∠NDC,如果∠M=∠N或∠A=∠NCD或AM∥CN或AB=CD,那么△ABM≌△CDN.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若a、b為有理數(shù),下列說(shuō)法正確的是( 。
A.若a≠b,則a2≠b2B.若a2=b2,則a=b
C.若a>b,則a2>b2D.若a、b不全為零,則a2+b2>0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

6.四人做傳數(shù)游戲:甲任報(bào)一個(gè)數(shù)傳給乙,乙把這個(gè)數(shù)減1傳給丙,丙再把所得的數(shù)的絕對(duì)值傳給丁,丁把所聽(tīng)到的數(shù)減1報(bào)出答案:
(1)如果甲報(bào)的數(shù)為x,則乙報(bào)的數(shù)為x-1,丙報(bào)的數(shù)為|x-1|,丁報(bào)的數(shù)為|x-1|-1;
(2)若丁報(bào)出的答案為2,則甲報(bào)的數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,BD為⊙O的直徑,點(diǎn)A是弧BC的中點(diǎn),AD交BC于E點(diǎn),AE=2,ED=4
(1)求證:△ABE∽△ADB; 
(2)求BE長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

3.在長(zhǎng)為8cm、寬為5cm的矩形的四個(gè)角上分別截去四個(gè)全等的小正方形,使得留下的圖形(圖中陰影部分)面積是原矩形面積的80%,求所截去小正方形的邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

10.如圖:請(qǐng)?jiān)谙铝兴膫(gè)條件:①AD∥BC,②AB=CD,③∠A=∠C,④AB∥CD中,選出兩個(gè),能推出△ABD≌△CDB:①②.(只要寫(xiě)出正確的一種即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

7.根據(jù)如圖所示的計(jì)算程序,若輸出的值為5,則輸入的值為10或-2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知點(diǎn)E為⊙O內(nèi)任意一點(diǎn),AB為過(guò)點(diǎn)E的任意一點(diǎn)弦,CD為過(guò)點(diǎn)E的另外一條弦,
(1)求證:AE•BE=CE•DE.
(2)求證:AE•BE是一個(gè)定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案