【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b的圖象與x軸、y軸交于A、B兩點,交反比例函數(shù)于C、D兩點,DEx軸于點E,已知C點的坐標(biāo)是(6,-1),DE=3

(1)求反比例函數(shù)與一次函數(shù)的解析式

(2)根據(jù)圖象直接回答:當(dāng)x為何值時,一次函數(shù)的值大于反比例函數(shù)的值.

(3)OAD的面積SOAD

【答案】(1)反比例函數(shù)的關(guān)系式為y=-,一次函數(shù)的關(guān)系式為y=-x+2;(2)當(dāng)x-20x6時,一次函數(shù)的值大于反比例函數(shù)的值;(3)6.

【解析】

1)先由點C的坐標(biāo)求出反比例函數(shù)的關(guān)系式,再由DE=3,求出點D的坐標(biāo),把點C,點D的坐標(biāo)代入一次函數(shù)關(guān)系式求出k,b即可求一次函數(shù)的關(guān)系式.
2)由圖象可知:一次函數(shù)的值小于反比例函數(shù)的值;
3)根據(jù)三角形面積公式即可求得.

(1)設(shè)反比例函數(shù)為y=

∵點C(6,-1)在反比例函數(shù)的圖象上,

m=6×(-1)=-6,

∴反比例函數(shù)的關(guān)系式為y=-

∵點D在反比例函數(shù)y=-上,且DE=3,

y=3,代入求得:x=-2,

∴點D的坐標(biāo)為(-23)

C、D兩點在直線y=kx+b上,

,

解得:

∴一次函數(shù)的關(guān)系式為y=-x+2

(2)由圖象可知:當(dāng)x-20x6時,一次函數(shù)的值大于反比例函數(shù)的值.

(3)y=0代入y=-x+2解得x=4,即A(4,0)

SOAD=×4×3=6

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠ABC=90°,AC=AD,M,N分別為AC,CD的中點,連接BM,MN,BN.BAD=60°,AC平分∠BAD,AC=2,BN的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了提高學(xué)生的身體素質(zhì),某班級決定開展球類活動,要求每個學(xué)生必須在籃球、足球、排球、乒乓球、羽毛球中選擇一項參加訓(xùn)練(只選擇一項),根據(jù)學(xué)生的報名情況制成如下統(tǒng)計表:

項目

籃球

足球

排球

乒乓球

羽毛球

報名人數(shù)

12

8

4

a

10

占總?cè)藬?shù)的百分比

24%

b

1)該班學(xué)生的總?cè)藬?shù)為   人;

2)由表中的數(shù)據(jù)可知:a   ,b   

3)報名參加排球訓(xùn)練的四個人為兩男(分別記為A、B)兩女(分別記為C、D),現(xiàn)要隨機在這4人中選2人參加學(xué)校組織的校級訓(xùn)練,請用列表或樹狀圖的方法求出剛好選中一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx﹣3a經(jīng)過點A﹣1,0)、C0,3),與x軸交于另一點B,拋物線的頂點為D

1)求此二次函數(shù)解析式;

2)連接DCBC、DB,求證:△BCD是直角三角形;

3)在對稱軸右側(cè)的拋物線上是否存在點P,使得△PDC為等腰三角形?若存在,求出符合條件的點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OAO的半徑,點E為圓內(nèi)一點,且OAOE,ABO的切線,EBO于點F,BQAF于點Q

(1)如圖1,求證:OEAB;

(2)如圖2,若ABAO,求的值;

(3)如圖3,連接OF,∠EOF的平分線交射線AF于點P,若OA2cosPAB,求OP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,(1)正方形ABCD及等腰RtAEF有公共頂點A,EAF90°, 連接BE、DF.RtAEF繞點A旋轉(zhuǎn),在旋轉(zhuǎn)過程中,BE、DF具有怎樣的數(shù)量關(guān)系和位置關(guān)系?結(jié)合圖(1)給予證明;

(2)將(1)中的正方形ABCD變?yōu)榫匦?/span>ABCD,等腰RtAEF變?yōu)?/span>RtAEF,且ADkAB,AFkAE,其他條件不變.(1)中的結(jié)論是否發(fā)生變化?結(jié)合圖(2)說明理由;

(3)將(2)中的矩形ABCD變?yōu)槠叫兴倪呅?/span>ABCD,將RtAEF變?yōu)?/span>AEF,且∠BADEAF,其他條件不變.(2)中的結(jié)論是否發(fā)生變化?結(jié)合圖(3),如果不變,直接寫出結(jié)論;如果變化,直接用k表示出線段BE、DF的數(shù)量關(guān)系,用表示出直線BE、DF形成的銳角.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某服裝公司招工廣告承諾:熟練工人每月工資至少3000元.每天工作8小時,一個月工作25天.月工資底薪800元,另加計件工資.加工1A型服裝計酬16元,加工1B型服裝計酬12元.在工作中發(fā)現(xiàn)一名熟練工加工1A型服裝和2B型服裝需4小時,加工3A型服裝和1B型服裝需7小時.(工人月工資=底薪+計件工資)

(1)一名熟練工加工1A型服裝和1B型服裝各需要多少小時?

(2)一段時間后,公司規(guī)定:每名工人每月必須加工A,B兩種型號的服裝,且加工A型服裝數(shù)量不少于B型服裝的一半.設(shè)一名熟練工人每月加工A型服裝a件,工資總額為W元.請你運用所學(xué)知識判斷該公司在執(zhí)行規(guī)定后是否違背了廣告承諾?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解全校3000名學(xué)生對學(xué)校設(shè)置的足球、籃球、乒乓球、羽毛球、排球共五項球類活動的喜愛情況,在全校范圍內(nèi)隨機調(diào)查了m名學(xué)生(每名學(xué)生必選且只能選擇這五項活動中的一種)進(jìn)行了問卷調(diào)查,將統(tǒng)計數(shù)據(jù)繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖提供的信息,解答下列問題:

1m   ,n   .并補全圖中的條形統(tǒng)計圖.

2)請你估計該校約有多少名學(xué)生喜愛打乒乓球.

3)在抽查的m名學(xué)生中,有A、B、CD10名學(xué)生喜歡羽毛球活動,學(xué)校打算從AB、C、D4名女生中,選取2名參加全市中學(xué)生女子羽毛球比賽,請用列表法或畫樹狀圖法,求同時選中B、C的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線ykx+b(k0),經(jīng)過點(60),且與坐標(biāo)軸圍成的三角形的面積是9,與函數(shù)y(x0)的圖象G交于AB兩點.

(1)求直線的表達(dá)式;

(2)橫、縱坐標(biāo)都是整數(shù)的點叫作整點.記圖象G在點A、B之間的部分與線段AB圍成的區(qū)域(不含邊界)W

當(dāng)m2時,直接寫出區(qū)域W內(nèi)的整點的坐標(biāo)   ;

若區(qū)域W內(nèi)恰有3個整數(shù)點,結(jié)合函數(shù)圖象,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案