【題目】一只不透明的袋子中,裝有三個分別標(biāo)記為“-1”、“2”、“ -3”的球,這三個球除了標(biāo)記不同外,其余均相同.?dāng)噭蚝螅瑥闹忻鲆粋球,記錄球上的標(biāo)記為后,放回袋中并攪勻,再從中摸出一個球,再次記錄球上的標(biāo)記為,最終結(jié)果記錄為.
(1)請用“畫樹狀圖”或“列表”等方法寫出上述實驗中所記錄球上標(biāo)記的所有可能的結(jié)果;
(2)若將記錄結(jié)果看成平面直角坐標(biāo)系中的一點,求是第二象限內(nèi)的點的概率.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b(k≠0)與反比例函數(shù)y=(m≠0)的圖象有公共點A(1,a)、D(﹣2,﹣1).直線l與x軸垂直于點N(3,0),與一次函數(shù)和反比例函數(shù)的圖象分別交于點B、C.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)根據(jù)圖象回答,x在什么范圍內(nèi),一次函數(shù)的值大于反比例函數(shù)的值;
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC中,AB=AC=5,cosB=,P是邊AB上一點,以P為圓心,PB為半徑的⊙P與邊BC的另一個交點為D,聯(lián)結(jié)PD、AD.
(1)求△ABC的面積;
(2)設(shè)PB=x,△APD的面積為y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域;
(3)如果△APD是直角三角形,求PB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,方格紙中的每個小方格都是邊長為1個單位長度的正方形,△ABC的頂點均在格點上,在建立平面直角坐標(biāo)系后,點C的坐標(biāo)為(-2,-2).
(1)畫出△ABC以y軸為對稱軸的對稱圖形,并寫出點C1的坐標(biāo);
(2)以原點O為對稱中心,畫出關(guān)于原點O對稱的并寫出點C2的坐標(biāo);
(3)以C2為旋轉(zhuǎn)中心,把順時針旋轉(zhuǎn)90°,得到△C2A3B3.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年2月3日至2019年2月20日,“第一屆”成都金沙太陽節(jié)在金沙遺址博物館成功舉辦,用世界文明展覽,主題燈展,園林花藝,美食演繹等一系列文化活動,與瑪雅這一著名的中美洲文明結(jié)下不解之緣,為成都人打造了一個博物館里的“文化年”.春節(jié)當(dāng)天,小杰于下午點乘車從家出發(fā),當(dāng)天按原路返回.如圖,是小杰出行的過程中,他距家的距離(千米)與他離家的時間(小時)之間的圖像.根據(jù)圖像,完成下面的問題:
(1)小杰家距金沙遺址博物館 千米,他乘車去金沙遺址博物館的速度是 千米/小時;
(2)已知晚上點時,小杰距家千米,請通過計算說明他何時才能回到家?
(3)請直接寫出小杰回家過程中與的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=1,BC=2,點E在AD上,點F在BC邊上,FE平分∠DFB.
(1)判斷△DEF的形狀,并說明理由;
(2)若點F是BC的中點,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點D、E分別在邊AB、AC上,DE、BC的延長線相交于點F,且.
(1)求證;
(2)當(dāng)AB=12,AC=9,AE=8時,求BD的長與的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,正方形ABCD的邊長為6cm,點F從點B出發(fā),沿射線AB方向以1cm/秒的速度移動,點E從點D出發(fā),向點A以1cm/秒的速度移動(不到點A).設(shè)點E,F同時出發(fā)移動t秒.
(1)在點E,F移動過程中,連接CE,CF,EF,則△CEF的形狀是 ,始終保持不變;
(2)如圖2,連接EF,設(shè)EF交BD于點M,當(dāng)t=2時,求AM的長;
(3)如圖3,點G,H分別在邊AB,CD上,且GH=cm,連接EF,當(dāng)EF與GH的夾角為45°,求t的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com