【題目】如圖(1),△ABC中,AB=AC,∠B、∠C的平分線相交于點(diǎn)O,過(guò)點(diǎn)O作EF∥BC交AB、AC于E、F。
①EF與BE、CF間有怎樣的數(shù)量關(guān)系?∠A與∠BOC怎樣的數(shù)量關(guān)系?說(shuō)明理由。
②若AB≠AC,其他條件不變,如圖(2),圖中還有幾個(gè)等腰三角形嗎?如果有,第①問(wèn)中EF與BE、CF間的關(guān)系還存在嗎?∠A與∠BOC的數(shù)量關(guān)系還存在嗎?
③若△ABC中,AB≠AC,∠B的平分線與三角形外角∠ACG的平分線CO交于O,過(guò)O點(diǎn)作OE∥BC交AB于E,交AC于F。如圖(3),EF與BE、CF間的關(guān)系如何?∠A與∠BOC的數(shù)量關(guān)系?說(shuō)明理由.
【答案】(1)答案見(jiàn)解析;(2)答案見(jiàn)解析;(3)答案見(jiàn)解析.
【解析】
(1)根據(jù)等腰三角形的性質(zhì),即可得出EF與BE、CF間有怎樣的關(guān)系,根據(jù)三角形內(nèi)角和定理及角平分線的定義探索∠A與∠BOC的關(guān)系;
(2)根據(jù)EF∥BC 和∠B、∠C的平分線交于O點(diǎn),還可以證明出△OBE和△OCF是等腰三角形;利用幾個(gè)等腰三角形的性質(zhì),即可得出EF與BE,CF的關(guān)系;
(3)EO∥BC和OB,OC分別是∠ABC與∠ACL的角平分線,還可以證明出△BEO和△CFO是等腰三角形,利用幾個(gè)等腰三角形的性質(zhì)以及線段的和差關(guān)系,即可得出EF與BE,CF的關(guān)系,根據(jù)角平分線的性質(zhì)及三角形外角的性質(zhì)探索∠A與∠BOC的關(guān)系.
解:(1)如圖1,∵EF∥BC,
∴∠EOB=∠OBC,∠FOC=∠OCB,
又∠B、∠C的平分線交于O點(diǎn),
∴∠EBO=∠OBC,∠FCO=∠OCB,
∴∠EOB=∠OBE,∠FCO=∠FOC,
∴OE=BE,OF=CF,
∴EF=OE+OF=BE+CF.
又AB=AC,
∴∠ABC=∠ACB,
∴∠EOB=∠OBE=∠FCO=∠FOC,
∴EF=BE+CF=2BE=2CF;
∠BOC=90°+ ∠A.理由如下:
∵∠BOC=180°-∠OBC-∠OCB,
∴2∠BOC=360°-2∠OBC-2∠OCB,
而BO平分∠ABC,CO平分∠ACB,
∴∠ABC=2∠OBC,∠ACB=2∠OCB,
∴2∠BOC=360°-(∠ABC+∠ACB),
∵∠ABC+∠ACB=180°-∠A,
∴2∠BOC=180°+∠A,
∴∠BOC=90°+∠A.
(2)有2個(gè)等腰三角形,分別是:等腰△OBE和等腰△OCF;第(1)問(wèn)中的關(guān)系EF=BE+CF仍成立.
理由:如圖2,∵BO平分∠ABC,CO平分∠ACB,
∴∠EBO=∠OBC,∠FCO=∠OCB,
∵EF∥BC,
∴∠EOB=∠OBC,∠FOC=∠OCB,
∴∠EBO=∠EOB,∠FOC=∠FCO,
∴BE=OE,CF=OF,
∴△BEO和△CFO是等腰三角形;
∵BE=OE,CF=OF,
∴EF=EO+FO=BE+CF;
∠BOC=90°+ ∠A.理由如下:
∵∠BOC=180°-∠OBC-∠OCB,
∴2∠BOC=360°-2∠OBC-2∠OCB,
而BO平分∠ABC,CO平分∠ACB,
∴∠ABC=2∠OBC,∠ACB=2∠OCB,
∴2∠BOC=360°-(∠ABC+∠ACB),
∵∠ABC+∠ACB=180°-∠A,
∴2∠BOC=180°+∠A,
∴∠BOC=90°+∠A.
(3)如圖3,∵EO∥BC,
∴∠EOB=∠OBC,∠EOC=∠OCD,
又∵OB,OC分別是∠ABC與∠ACD的角平分線,
∴∠EBO=∠OBC,∠ACO=∠OCD,
∴∠EOB=∠EBO,
∴BE=OE,
∠FCO=∠FOC,
∴CF=FO,
又∵EO=EF+FO,
∴EF=BE-CF.
∠BOC= ∠A.理由如下:
∵∠OCG=∠BOC+∠OBC,∠ACG=∠ABC+∠A,
而BO平分∠ABC,CO平分∠ACG,
∴∠ACG=2∠OCG,∠ABC=2∠OBC,
∴2∠BOC+2∠OBC=∠ABC+∠A,
∴2∠BOC=∠A,
即∠BOC= ∠A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一張三角形紙片ABC,其中∠BAC=60°,BC=6,點(diǎn)D是BC邊上一動(dòng)點(diǎn),將BD,CD翻折使得B′,C′分別落在AB,AC邊上,(B與B′,C與C′分別對(duì)應(yīng)),點(diǎn)D從點(diǎn)B運(yùn)動(dòng)至點(diǎn)C,△B′C′D面積的大小變化情況是( 。
A. 一直減小 B. 一直不變 C. 先減小后增大 D. 先增大后減小
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線l:y=﹣x+4,在直線l上取點(diǎn)B1,過(guò)B1分別向x軸,y軸作垂線,交x軸于A1,交y軸于C1,使四邊形OA1B1C1為正方形;在直線l上取點(diǎn)B2,過(guò)B2分別向x軸,A1B1作垂線,交x軸于A2,交A1B1于C2,使四邊形A1A2B2C2為正方形;按此方法在直線l上順次取點(diǎn)B3,B4,…,Bn,依次作正方形A2A3B3C3,A3A4B4C4,…,An﹣1AnBnCn,則A3的坐標(biāo)為___,B5的坐標(biāo)為___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=-x2+2x+m的圖象與x軸的一個(gè)交點(diǎn)為A(3,0),另一個(gè)交點(diǎn)為B,且與y軸交于點(diǎn)C.若該二次函數(shù)圖象上有一點(diǎn)D(x,y),使S△ABD=S△ABC,則D點(diǎn)的坐標(biāo)為____________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,(1)寫出△ABC的各頂點(diǎn)坐標(biāo),寫出△ABC關(guān)于X軸對(duì)稱的△A2B2C2的各點(diǎn)坐標(biāo).
(2)畫出△ABC關(guān)于Y軸對(duì)稱的△A1B1C1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列解題過(guò)程:已知、、為△ABC的三邊,且滿足,
試判斷△ABC的形狀.
解:∵ ①
∴ ②
∴ ③
∴△ABC為直角三角形.
問(wèn):(1)上述解題過(guò)程,從哪一步開始出現(xiàn)錯(cuò)誤?請(qǐng)寫出該步的代號(hào)________;
。2)錯(cuò)誤的原因是____________________________;
(3)本題的正確結(jié)論是_________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形ABCO的對(duì)角線BO在x 軸上,若正方形ABCO的邊長(zhǎng)為,點(diǎn)B在x負(fù)半軸上,反比例函數(shù)的圖象經(jīng)過(guò)C點(diǎn).
(1)求該反比例函數(shù)的解析式;
(2)當(dāng)函數(shù)值>-2時(shí),請(qǐng)直接寫出自變量x的取值范圍;
(3)若點(diǎn)P是反比例函數(shù)上的一點(diǎn),且△PBO的面積恰好等于正方形ABCO的面積,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,E為AC上一點(diǎn),且AE=BC,過(guò)點(diǎn)A作AD⊥CA,垂足為A,且AD=AC,AB、DE交于點(diǎn)F.試判斷線段AB與DE的數(shù)量關(guān)系和位置關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市用1200元購(gòu)進(jìn)一批甲玩具,用800元購(gòu)進(jìn)一批乙玩具,所購(gòu)甲玩具件數(shù)是乙玩具件數(shù)的,已知甲玩具的進(jìn)貨單價(jià)比乙玩具的進(jìn)貨單價(jià)多1元.
(1)求:甲、乙玩具的進(jìn)貨單價(jià)各是多少元?
(2)玩具售完后,超市決定再次購(gòu)進(jìn)甲、乙玩具(甲、乙玩具的進(jìn)貨單價(jià)不變),購(gòu)進(jìn)乙玩具的件數(shù)比甲玩具件數(shù)的2倍多60件,求:該超市用不超過(guò)2100元最多可以采購(gòu)甲玩具多少件?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com