設(shè)α、β分別是方程x2+x-1=0的兩根,則2α5+5β3=   
【答案】分析:由于α,β分別是方程x2+x-1=0的根,故有:α2+α-1=0,β2+β-1=0,把2α5+5β3變形后即可解出答案.
解答:解:由于α,β分別是方程x2+x-1=0的根,故有:α2+α-1=0,β2+β-1=0,
即α2=1-α,β2=1=β,
從而α5=(α22•α=(1-α)2α=(α2-2α+1)α=(1-α-2α+1)α=-3α2+2α=-3(1-α)+2α=5α-3.
而β32β=(1-β)β=β-β2=β-(1-β)=2β-1,
從而知2α5+5β3=2(5α-3)+5(2β-1)=10(α+β)-11=-21.
故答案為:-21.
點(diǎn)評(píng):本題考查了根與系數(shù)的關(guān)系,難度較大,關(guān)鍵是掌握根據(jù)已知條件對(duì)2α5+5β3進(jìn)行變形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

13、設(shè)等腰三角形的一腰與底邊的長(zhǎng)分別是方程x2-6x+a=0的兩根,當(dāng)這樣的三角形只有一個(gè)時(shí),求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知拋物線y=-3x2-(2c-b)x+a2,其中a、b、c是一個(gè)直角三角形的三邊的長(zhǎng),且a<b<c,又知這個(gè)三角形兩銳角的正弦值分別是方程25x2-35x+12=0的兩個(gè)根.
(1)求a:b:c;
(2)設(shè)這條拋物線與x軸的左、右交點(diǎn)分別是M、N,與y軸的交點(diǎn)為T,頂點(diǎn)為P,求△MPT的面積(用只含a的代數(shù)式表示);
(3)在(2)的條件下,如果△MPT的面積為9,問拋物線上是否存在異于點(diǎn)P的點(diǎn)Q,使得△QMT的面積與△MPT的面積相等?如果存在,請(qǐng)求出點(diǎn)Q的坐標(biāo),如果不存在請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,A,B分別為x軸和y軸正半軸上的點(diǎn),OA,OB的長(zhǎng)分別是方程x2-14x+48=0的兩根(OA>OB),直線BC平分∠ABO交x軸于C點(diǎn),P為BC上一動(dòng)點(diǎn),P點(diǎn)以每秒1個(gè)單位的速度從B點(diǎn)開始沿BC方向移精英家教網(wǎng)動(dòng).
(1)設(shè)△APB和△OPB的面積分別為S1,S2,求S1:S2的值;
(2)求直線BC的解析式;
(3)設(shè)PA-PO=m,P點(diǎn)的移動(dòng)時(shí)間為t.
①當(dāng)0<t≤4
5
時(shí),試求出m的取值范圍;
②當(dāng)t>4
5
時(shí),你認(rèn)為m的取值范圍如何?(只要求寫出結(jié)論)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

13、設(shè)α、β分別是方程x2+x-1=0的兩根,則2α5+5β3=
-21

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(-3,6),點(diǎn)B,點(diǎn)C分別在x軸的負(fù)半軸和正半軸上,OB,OC的長(zhǎng)分別是方程x2-4x+3=0的兩根(OB<OC).
(1)求B,C兩點(diǎn)的坐標(biāo);
(2)若平面內(nèi)有M(6,3),D為BC延長(zhǎng)線上的一點(diǎn),且滿足∠DMC=∠BAC,求直線AD的解析式;
(3)若△MDC沿著x軸負(fù)半軸的方向以每秒1個(gè)單位長(zhǎng)度的速度勻速運(yùn)動(dòng),點(diǎn)M、C、D的對(duì)應(yīng)點(diǎn)分別為M′、C′、D′,4秒后△MDC停止運(yùn)動(dòng),設(shè)△M′C′D′與△ABC重合部分的面積為S,運(yùn)動(dòng)時(shí)間為t,求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊(cè)答案